	ne and outline a mechanism for the reaction between methanol and propanoyl ride to form methyl propanoate.
Na	me of mechanism
Ме	chanism
Dro	
	nanoic anhydride could be used instead of propancyl chloride in the preparation
	panoic anhydride could be used instead of propanoyl chloride in the preparation ethyl propanoate from methanol. Draw the structure of propanoic anhydride.
	dethyl propanoate from methanol. Draw the structure of propanoic anhydride. Give one advantage of the use of propanoyl chloride instead of propanoic
of m	ethyl propanoate from methanol. Draw the structure of propanoic anhydride.
of m	dethyl propanoate from methanol. Draw the structure of propanoic anhydride. Give one advantage of the use of propanoyl chloride instead of propanoic

(i)	Deduce the molecular formula of this ester.
(ii)	Draw two possible structures for this ester.

(3)

(Total 12 marks)

(e) An ester contains a benzene ring. The mass spectrum of this ester shows a

Q2 foo		ers have many important commercial uses such as solvents and artificial flavourings in	
	Esters can be prepared in several ways including the reactions of alcohols with carboxylic acids, acid anhydrides, acyl chlorides and other esters.		
	(a)	Ethyl butanoate is used as a pineapple flavouring in sweets and cakes.	
		Write an equation for the preparation of ethyl butanoate from an acid and an alcohol.	
	Give a catalyst used for the reaction.		

(b) Butyl ethanoate is used as a solvent in the pharmaceutical industry.

Write an equation for the preparation of butyl ethanoate from an acid anhydride and an alcohol.	l
	_
	_

(4)

(3)

(c) Name and outline a mechanism for the reaction of CH₃COCI with CH₃OH to form an ester.

	CH ₂ OOCC ₁₇ H ₃₁
	CHOOCC ₁₇ H ₃₃
CH ₂₃ OOCC ₁₇ H ₂₉ Draw the repeating unit of the polyester Terylene the benzene-1,4-dicarboxylic acid and ethane-1,2-diol. Although Terylene is biodegradeable, it is preferable Terylene.	I CH ₂₃ OOCC ₁₇ H ₂₉
	e repeating unit of the polyester Terylene that is made from -1.4-dicarboxylic acid and ethane-1.2-diol
Terylene	
Give one	advantage and one disadvantage of recycling objects made from
Give on e Terylene	advantage and one disadvantage of recycling objects made from .
Give on e Terylene	advantage and one disadvantage of recycling objects made from .
Give one Terylene	advantage and one disadvantage of recycling objects made from .
Give on	advantage and one disadvantage of recycling objects made from .
Give on	advantage and one disadvantage of recycling objects made from .
Give on	advantage and one disadvantage of recycling objects made from
Give on	advantage and one disadvantage of recycling objects made from
Give on	advantage and one disadvantage of recycling objects made from
Give on	advantage and one disadvantage of recycling objects made from

unre	e how an aldehyde could be tested to show whether it is contaminated with traces of acted acyl chloride. e what you would observe.
	<u> </u>
	ervation
	(Total 2 marks)
	reactions of molecules containing the chlorine atom are often affected by other functional the molecule.
Cons	sider the reaction of CH ₃ CH ₂ COCI and of CH ₃ CH ₂ CH ₂ CI with ammonia.
(a)	For the reaction of CH ₃ CH ₂ COCI with ammonia, name and outline the mechanism and name the organic product.

Q3. Aldehydes can be prepared from acyl chlorides.

Sug	gest one reason why chlorobenzene (C ₆ H₅Cl) does not react with ammonia er normal conditions.
aria	si normal conditions.

Q5. Benzoic acid can be prepared from ethyl benzoate. Ethyl benzoate is first hydrolysed in alkaline conditions as shown:

A student used the following method.

Add 5.0 cm³ of ethyl benzoate (density = 1.05 g cm⁻³, M_r = 150) to 30.0 cm³ of aqueous 2 mol dm⁻³ sodium hydroxide in a round-bottomed flask.

Add a few anti-bumping granules and attach a condenser to the flask. Heat the mixture under reflux for half an hour. Allow the mixture to cool to room temperature.

Pour 50.0 cm³ of 2 mol dm⁻³ hydrochloric acid into the cooled mixture.

Filter off the precipitate of benzoic acid under reduced pressure.

(a)	Suggest now the anti-bumping granules prevent bumping during reflux.	
		(1)
		١.

(b) Show, by calculation, that an excess of sodium hydroxide is used in this reaction.

(c)	Suggest why an excess of sodium hydroxide is used.	
(d)	Suggest why an electric heater is used rather than a Bunsen burner in this hydrolysis.	(1)
(e)	State why reflux is used in this hydrolysis.	(1

(2)

(1)

	Percentage yield
Suggest why the yield is not 100%.	
Calculate the percentage yield of be	enzoic acid.
btained 5.12 g of benzoic acid.	dent used 0.040 mol of ethyl benzoate and
Describe the method that the stude	nt should use to purify the benzoic acid.
After the solid benzoic acid has bee	en filtered off, it can be purified.
Suggest why sodium benzoate is son cold water.	oluble in cold water but benzoic acid is insoluble

Q1.

(a) $CH_3OH + CH_3CH_2COOH \rightarrow CH_3CH_2COOCH_3 + H_2O$

1

(b) (nucleophilic) addition-elimination NOT acylation

1

$$(CH_3CH_2) CI \longrightarrow CH_3CH_2 CI$$

$$(CH_3CH_2) CI \longrightarrow CH_3CH_2 CI$$

$$(CH_3) CH$$

$$(CH_3) CH$$

ignore use of CI to remove H+

M3 for structure M4 for 3 arrows and lone pair

4

allow C₂H₅ and −CO₂− allow CH₃CH₂COOCOCH₂CH₃ **or** (CH₃CH₂CO)₂O

1

(d) (i) faster/not reversible/bigger yield/purer product/no(acid) (catalyst) required

1

(ii) anhydride less easily hydrolysed or reaction less violent/exothermic no (corrosive) (HCI) fumes formed or safer or less toxic/dangerous expense of acid chloride or anhydride cheaper

any one

1

(e) (i) $C_8H_8O_2$

1

(ii) any two from

2

[12]

Q2.

(a) **M1** CH₃CH₂CH₂COOH not C₃H₇COOH

1

M2 CH₃CH₂OH or C₂H₅OH

1

M3 CH₃CH₂COOCH₂CH₃ + H₂O allow C₃H₇COOC₂H₅ penalise M3 for wrong products and unbalanced equation

1

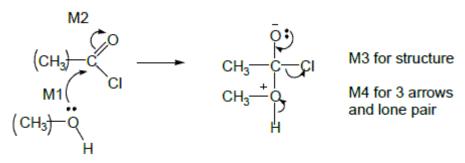
M4 H₂SO₄ or HCl or H₃PO₄ conc or dil or neither not HNO₃

1

(b) M1 CH₃CH₂CH₂CH₂OH

1

not C₄H₉OH


M2 (CH₃CO) ₂O

1

M3 → CH₃COOCH₂CH₂CH₂CH₃ + CH₃COOH allow CH₃COOC₄H₉ penalise M3 for wrong products and unbalanced equation

1

(c) (nucleophilic) addition-elimination

not acylation alone

M2 not allowed indep of M1 but allow M1 for correct attack

on C+ +C=O loses M2 only allow M4 after correct or v close M3 ignore CF removing H⁺

5

(d)

$$\begin{pmatrix} CH_{2}OOCC_{17}H_{31} \\ CH_{2}OOCC_{17}H_{33} \\ CH_{2}OOCC_{17}H_{29} \end{pmatrix} + 3 CH_{3}OH \longrightarrow \begin{pmatrix} CH_{2}OH \\ CH_{2}OH \\ CH_{2}OH \\ CH_{2}OH \end{pmatrix} + C_{17}H_{33}COOCH_{3} \\ CH_{2}OH \\ CH_{2}OH \\ CH_{2}OH \\ CH_{2}OH \\ CH_{2}OCCH_{3} \\ CH_{2}OCCCH_{3} \\ CH_{2}OCCCH_{4} \\ CH_{4}OCCCH_{4} \\ CH_{4}OCCC$$

ignore errors in initial triester First mark for 3CH₃OH Third mark for all three esters

3

(e)

First mark for correct ester link second mark for the rest including trailing bonds If ester link wrong, lose second mark also

2

Adv reduces landfill

saves raw materials

lower cost for recycling than making from scratch reduces CO_2 emissions by not being incinerated

not allow cost without qualification ignore energy uses

1

Disad

difficulty/cost of collecting/sorting/processing product not suitable for original purpose, easily contaminated not allow cost without qualification ignore energy uses

[19]

Q3.

Test silver nitrate (solution) (M1)

Allow an alternative soluble silver salt eg fluoride, sulfate. Do not allow 'silver ions' but can access second mark. Incorrect formula loses this mark but can access second mark.

Do not allow 'silver' or an insoluble silver salt and cannot

access second mark.

Ignore references to acidification of the silver nitrate.

If an acid is specified it should be nitric acid, but allow sulfuric acid in this case as there are no metal ions present.

If hydrochloric acid is used, CE = 0/2.

Do not allow 'add water'.

Observation

white precipitate (M2)

Ignore 'cloudy'.

Do not allow 'white fumes' or 'effervescence'.

Do not allow this mark if test reagent is incorrect or missing. Allow <u>named indicator paper</u> or <u>named indicator solution</u> for **M1**.

Allow correct colour change for M2.

[2]

1

Q4.

- (a) (Nucleophilic) addition-elimination
 - Minus sign on NH₃ loses M1(but not M4 also)
 - M2 not allowed independent of M1, but

M2 M3 CH_3CH_2 CH_3CH_2

- allow M1 for correct attack on C+
- + rather than δ+ on C=O loses M2
- If CI lost with C=O breaking, max1 for M1
- M3 for correct structure <u>with charges</u> but Ip on O is part of M4
- only allow M4 after correct/very close M3
- For M4, ignore NH₃ removing H⁺ but lose M4 for CF removing

H+ in mechanism,

· but ignore HCl shown as a product

propanamide (Ignore -1-)

penalise other numbers penalise propaneamide and N-propanamide

1

4

(b) Nucleophilic substitution

- Minus sign on NH₃ loses M1 (not M4 also)
- + rather than δ+ on C=O loses M2

M₃ structure M1

- · ALLOW SN1 so allow M2 for loss of CF before attack of on C+ for M1 NH_3
- only allow M4 after correct/very close M3
- For M4, ignore NH3 removing H+ but lose M4 for CF removing H+ in mechanism,

Propylamine (ignore number 1)

· but ignore HCl shown as a product

or propan-1-amine or 1-aminopropane (number 1 needed) penalise other numbers allow 1-propanamine

electron rich ring or benzene or pi cloud repels nucleophile/ammonia (c) Allow

- C–Cl bond is short/stronger than in haloalkane
- C–Cl is less polar than in haloalkane
- resonance stabilisation between ring and Cl

1

1

1

1

Q5.

- allows smaller <u>bubbles</u> to form / prevents the formation of (very) large <u>bubbles</u> (a) ALLOW provides large surface area for bubbles to form on IGNORE 'air' NOT no bubbles form / prevents bubbles forming
- (b) (Mass of ester = $1.05 \times 5.0 = 5.25g$) amount of ester = 5.25 / 150.0 = 0.0350 mol

amount of NaOH = $30 \times 2 / 1000 = 0.06 \text{ mol}$

OR

(Mass of ester = $1.05 \times 5.0 = 5.25g$)

Carboxylic Acids and derivatives SCT Page 13 of 15

[13]

amount of ester = 5.25 / 150.0 = 0.0350 mol 1 Vol of 0.035 mol of NaOH = $(0.035/2) \times 1000 = 17.5 \text{ cm}^3$ (so 30 cm³ used is an excess) 1 OR amount of NaOH = $30 \times 2 / 1000 = 0.06 \text{ mol}$ 1 $0.06 \text{ mol of ester} = 9 \text{ g} = 8.57 \text{ cm}^3$ (only 5 cm³ used so NaOH in excess) 1 Mark independently Max 2 To ensure that the ester is completely hydrolysed / to ensure all the ester (c) reacts ALLOW to ensure the other reagent has completely reacted 1 (d) Many organic compounds / the ester / ethanol are flammable ALLOW prevent ignition of any flammable vapours formed 1 Reflux allows reactant vapours (of volatile organic compounds) to be returned (e) to the reaction mixture / does not allow any reactant vapour to escape IGNORE reference to products 1 $C_6H_5COONa + HCI \rightarrow C_6H_5COOH + NaCI$ (f) Allow ionic equation. ALLOW molecular formulae (C₇H₅O₂Na and C₇H₆O₂) ALLOW skeletal benzene ring 1 (g) Sodium benzoate soluble because it is ionic IGNORE polar 1 Benzoic acid insoluble because: despite the polarity of the COOH group / ability of COOH to form H-bonds, the benzene ring is non-polar. ALLOW 'part of molecule' or 'one end' for COOH 1 Dissolve crude product in hot solvent/water (h) ALLOW ethanol If no M1 max = 41 of minimum volume ALLOW reference to saturated soln as alternative to 'min vol' 1 Filter (hot to remove insoluble impurities)

IGNORE use of Buchner funnel here

		1
	Cool to recrystallise	
	apply list principle for each additional process in an incorrect	
	method but IGNORE additional m.pt determination	1
	Filter under reduced pressure / with Buchner/Hirsch apparatus	
	Titler drider reddeed presedre / With Basimer/Tilleen apparatas	1
	wash (with cold solvent) and dry	
		1
(i)	5.12 / 122 (= 0.042 mol)	
	method mark	1
		•
	$(0.042/0.04) \times 100 = 105 \%$	
	ecf for M1/0.04	
	or calculation that 0.04 mol of benzoic = $4.88 g$ (M1) so	
	% yield = (5.12/4.88) × 100 = 105%	
		1
	Product not dried / impurities present in product	
	Only allow M3 if M2>100%	
		1
		[18]