ABB

EDITION 2020

Electronic relays and controls

SELECTION TABLES

ABB has the industry's most

 comprehensive range of time relays, measuring and monitoring relays, interface relays and power supplies - helping you to source all critical components from a single global supplier.Increase the reliability of process equipment with control devices that provide intelligent signals and smart adjustments that help you achieve maximum system availability.

Table of contents

4	Overview
11	Time relays
17	Measuring and monitoring relays
31	Primary switch mode power supplies
37	Interface relays and optocouplers

Interface relays and optocouplers
 A proven technology used worldwide

Relays are universally applicable and are utilized in a diverse array of applications. They are a significant element in contemporary industrial processes and are used in applications where galvanic isolation, signal separation, voltage coupling and signal amplification are required.

ABB offers a complete range of interface relays and optocouplers for increased flexibility and choice. This portfolio includes pluggable relays for easy interchangeability and optocouplers for an extended electrical life. The portfolio includes electromechanical relays and optocouplers - the electromechanical relays operate using an electromagnetic field, whereas optocouplers use light.

Optocouplers are predominantly used in applications where a high switching frequency is necessary. Furthermore, optocouplers do not contain any moving parts and are therefore bounce-free, immune to vibrations and possess a long electrical life. This wide selection of relays adheres to the highest global standards and satisfies the requirements for a diverse number of applications and needs.

Billions
of relays operate and
interface between control circuits and electrical loads
Sensor

Time relays

Have the perfect timing- everywhere

Available in three different ranges to cover every application, the CT range time relays are used to provide reliable timing functions worldwide. In both industrial and building applications, the time relays of the CT range have proven their excellent functionality in daily use under the toughest conditions.

Choose ABB as the partner for all your low voltage timing control needs to leverage our wide variety of product options. From economic to high-end solutions - the range offers maximum value. Time relays are found everywhere, for example in air conditioning systems, heaters and fans in industrial and in residential buildings. On-delay, off-delay and a range of other functions cover all requirements.

Shock

and vibration resistant
CT-S relays are perfect
for use in rolling stock
for use in roling stock

- Control panels
- Pump controls
- Star-delta motor starting
- Movable equipment like cranes
- Machine tools
- Automatic doors
- Car park barriers
- Assembly machines
- HVAC
- Compressor controls
- Transportation
- Industrial refrigeration
- Packaging machines
- Backing ovens
- Water and wastewater
- Wind
- Industrial cleaning processes

Primary switch mode power supplies
 Excellent reliability in harsh environments

Available in four different ranges to cover every application requirement, ABB's CP range power supplies are used to power valuable assets worldwide.

Choose ABB as your power supply partner and leverage our wide variety of product options. From economic to high-end solutions, the CP range offers maximum value. Their excellent reliability in daily use is well proven even under the toughest of conditions.

Measuring and monitoring relays

Increase process

 availability and take actionThe relays inform users about abnormal conditions and allow them to take necessary corrective actions before severe and costly failures can occur.

Measuring and monitoring relays monitor and detect operating conditions with regard to phase, current, voltage, frequency, temperature, liquid level or insulation faults. The relays inform users about abnormal conditions and allow them to take necessary corrective actions before severe and costly failures can occur.

ABB offers the broadest range of measuring and monitoring relays in the industry - so you can source your critical components from a global supplier. Increase the reliability of your process equipment with controllers that deliver intelligent signals and settings to ensure maximum availability. Ensure continuous operation, engineer time savings and benefit from ABB's global support for measuring and monitoring relays.

Electronic relays and controls websites Your one-stop shop for product information

On our web site you will also find the products in this catalog together with the current life cycle status, data sheets, certificates and tools.

Online data sheets

For detailed product information, use the order code to access the online data sheets as in the following example:
new.abb.com/products/1SVR740110R3300

Time relays

12	Offer overview
13	Selection table
13	CT-C range
14	CT-S range
15	CT-D range

Time relays

Offer overview

Time relays for industrial applications

CT-C: the compact range

The CT-C range combines lower cost with higher value and performance by offering essential functions in a space-saving 17.5 mm housing. The range offers a choice of 11 devices, including single and multifunctional types, with timing functions that range from 0.05 seconds to 100 hours. Equipped with a wide voltage range, the CT-C range is suitable for a huge variety of applications worldwide.

CT-S: the high-performance range

The advanced CT-S range is ABB's universal range of electronic timers. It includes 22 single-function devices and 16 multifunction time relays, offering flexibility in operation with up to 13 functions. The devices feature seven or ten time ranges, adjustable from 0.05 seconds to 300 hours. Additionally, every device is available in two different connection technologies: familiar double-chamber cage connection terminals (screw terminals) and ABB's vibration-resistant Easy Connect technology (push-in terminals).

Time relays for building applications

CT-D range

The CT-D range is ideal for building applications and installation panels, due to its compact modular housing. For maximum flexibility in operation, nine singlefunction as well as two multifunction devices with seven timing functions are available. The devices offer four or seven time ranges from 0.05 seconds up to 100 hours. Their wide supply voltage range allows their use in applications worldwide.

CT-C range
 Selection table

						0 0 0 0 0 0 0 0 0 0 n n n n n		0 0 0 0 0 0 0 \cdots 1 0 0 n n n n n				0 0 0 0 0 0 0 1 0 0 n n n n n	0 0 0 0 0 0 1 1 0 0 0 n n n n n	
$\stackrel{\nu}{\boldsymbol{\nu}} \underset{\mathfrak{\imath}}{2}$		$\begin{aligned} & N \\ & \underset{U}{u} \\ & \underset{U}{U} \\ & \sum_{i}^{\prime} \\ & \vdots \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{U}{U} \\ & \underset{\sim}{1} \\ & \stackrel{i}{U} \end{aligned}$	$\begin{aligned} & \underset{1}{u} \\ & \dot{u} \\ & \underset{\sim}{x} \\ & \stackrel{1}{u} \end{aligned}$	\sim \vdots u r \vdots \vdots			$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{U}{T} \\ & \underset{U}{1} \\ & \underset{U}{n} \end{aligned}$	$\stackrel{N}{\sim}$	N \vdots \vdots u \vdots \vdots	\sim $\underset{\sim}{U}$ $\stackrel{1}{1}$ $\stackrel{1}{U}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\cup} \\ & \stackrel{1}{U} \end{aligned}$	$$	\sim \sim u \sim \sim \sim
Timing function														
ON-delay $\quad \boxtimes$	■	\square	\square		-	\square								
OFF-delay with aux. voltage	\square	\square	\square				\square	\square						
OFF-delay w/o aux. voltage				\square										
Impulse-ON	\square	\square	\square						\square					
Impulse-OFF with aux. voltage 1 ¢	\square	\square	\square											
Impulse-OFF w/o aux. voltage				\square										
Flasher starting with ON $\quad \Perp$	\square	\square	\square							\square				
Flasher starting with OFF \quad ת	\square	\square	\square							\square				
Pulse generator starting with ON or OFF 区											\square	\square		
Pulse former 10		\square	\square											
Star-delta change-over \triangle													\square	\square
Features														
Control input, voltage-related triggering		\square	\square				\square	\square			\square	■		
Time range														
$0.05 \mathrm{~s}-100 \mathrm{~h}$	\square	\square	\square		\square	\square	\square	\square	\square	\square	2	2		
$0.05 \mathrm{~s}-10 \mathrm{~min}$				\square									\square	\square
Supply voltage														
$12-240$ V AC/DC	\square		\square											
24-240 V AC/DC				\square										
24-48 V DC		\square		\square										
24-240 V AC		\square		\square	\square	\square	\square	\square	\square	-	-	■	\square	\square
Output														
Solid state	\square													
c/o contact		1	2	1	1	2	1	2	1	1	1	2		
n/o contact													2	2

CT－S range

Selection table

Order number and type All devices are available ei－ ther with push－in terminals （P－type）or double－cham－ ber cage connection terminals（S－type）．

		0 0 0 0 0 0 0 0 0 0 1 n \sim n n n		1SVR7■0021R2300		\circ O 	\circ 0 0						1SVR7■0180R0300	1SVR7■0180R3300	001をษ08T0■LとへSI					
	$\begin{aligned} & { }_{\mathrm{N}}^{\mathrm{v}} \\ & \stackrel{0}{2} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{N}{N} \\ & \underset{i}{i} \\ & \underset{U}{\prime} \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{n} \\ & \underset{N}{n} \\ & \underset{i}{\dot{u}} \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{\prime} \\ & \underset{\sim}{\dot{U}} \\ & \underset{i}{\prime} \end{aligned}$		$\begin{aligned} & \stackrel{\bullet}{n} \\ & \underset{\sim}{N} \\ & \underset{\sim}{U} \\ & \stackrel{1}{U} \end{aligned}$		$\begin{gathered} \stackrel{\rightharpoonup}{N} \\ \underset{N}{n} \\ \underset{\sim}{3} \\ \vdots \\ \vdots \end{gathered}$				$\begin{gathered} \bullet \\ \underset{\sim}{n} \\ \dot{\sim} \\ \dot{c} \\ \stackrel{1}{u} \\ \stackrel{1}{u} \end{gathered}$	$\text { CT-APS. } 22 \bullet$	$\begin{aligned} & \stackrel{\bullet}{n} \\ & \underset{-}{\prime} \\ & \dot{U} \\ & \underset{\sim}{4} \\ & \stackrel{1}{4} \end{aligned}$		$\begin{aligned} & \bullet \\ & -\underset{1}{\prime} \\ & \dot{\sim} \\ & \stackrel{c}{4} \\ & \stackrel{1}{U} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \underset{\sim}{u} \\ & \underset{\sim}{\underset{u}{4}} \\ & \stackrel{1}{u} \end{aligned}$	$\stackrel{\rightharpoonup}{n}$ \sim \sim \sim \sim \vdots	$\begin{gathered} \bullet \\ \underset{\sim}{n} \\ \dot{\sim} \\ \dot{u} \\ \stackrel{1}{u} \end{gathered}$
Timing function																				
ON－delay	\triangle	－	\square	\square	\square		\square	\square	－	\square	\square	\square								
ON－delay，accumulative	$\triangle(+)$	\square	\square	\square	\square		\square													
OFF－delay w．aux．voltage	\square	\square	\square	\square	\square		\square	\square					\square	\square	\square	\square				
OFF－delay w．aux．voltage，accumulative							\square													
OFF－delay w／o aux．voltage	\square																\square	\square		
ON－and OFF－delay，symmetrical	\triangle	\square	\square	\square	\square		\square	\square												
ON－and OFF－delay，symmetrical，accumulative	$\triangle 1$						\square													
ON－and OFF－delay，asymmetrical	®					\square														
ON／OFF function	\square																			
Impulse－ON	$1 \Omega \boxtimes$	\square	\square	\square	\square		\square	\square	\square											
Impulse－ON，accumulative	$1 \Omega \boxtimes$						\square													
Impulse－OFF w．aux．voltage	1几回	\square	\square	\square	\square		\square	\square												
Impulse－OFF w．aux．voltage，accumulative	$1 \Omega \square$						\square													
Impulse－ON and OFF	1 $几$ 园					\square														
Fixed impulse with adjustable time delay	$\triangle 1 \Omega$								\square											
Adjustable impulse with fixed time delay	$\triangle 1 \Omega$								\square											
Flasher starting with ON	$\checkmark \boxtimes$						\square	\square	\square											
Flasher with reset，starting with ON	\checkmark						\square	\square												
Flasher starting with OFF	\checkmark						\square	\square	\square											
Flasher with reset，starting with OFF	\checkmark						\square	\square												
Flasher starting with ON or OFF	\checkmark ，	\square	\square	\square	\square															
Pulse generator starting with ON or OFF	는					\square														
Single pulse generator	잠，Ω					\square														
Pulse former	$\square \Omega$	\square	\square	\square	\square		\square	\square												
Star－delta change－over	\triangle																		\square	\square
Star－delta change－over with impulse	$\Delta 1 \Omega$	\square	\square	\square				\square												

Features

 Extended temperature range（ $-40 \ldots+60^{\circ} \mathrm{C}$ ）

Time range

$0.05 \mathrm{~s}-10 \mathrm{~min}$																\square	\square	\square	\square
0.05 s－ 300 h	\square	\square	\square	\square	2	\square	－	■											
Supply voltage																			
24－48 V DC		\square		\square	■	\square			\square										
24－240 V AC		\square		\square	■	\square			\square										
24－240 V AC／DC	\square					\square			\square			\square				\square	\square		
$380-440$ V AC			\square																\square

Output

c／o contact

2	2	2	1	2	2	2	2	2	2	1	2	2	1	2	1	2		
																	2	2

CT-D range

Selection table

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Measuring and monitoring relays

18	Offer overview
20	Product range
21	Selection table
21	Single-phase current monitoring relays
21	Single-phase voltage monitoring relays
23	Three-phase monitoring relays
25	Grid feeding monitoring relays
26	Insulation monitoring relays
27	Thermistor motor protection relays
28	Temperature monitoring relays
29	Liquid level monitoring relays

Measuring and monitoring relays
 Offer overview

Single-phase current and voltage monitoring relays Current monitoring

- Monitoring of motor current consumption
- Monitoring of lighting installations and heating circuits
- Monitoring of transportation equipment overload
- Monitoring of locking devices, electromechanical brake gear and locked rotors

Voltage monitoring

- Speed monitoring of DC motors
- Monitoring of battery voltages and other supply networks

Three-phase monitoring relays

- Voltage monitoring of mobile three-phase equipment
- Protection of personnel and installations against phase reversal
- Monitoring of the supply voltage of machines and installations
- Protection of equipment against damage caused by unstable supply voltage
- Switching to emergency or auxiliary supply
- Protection of motors against damage caused by unbalanced phase voltages and phase loss

Grid feeding monitoring relays

The CM-UFx range monitors all voltage and frequency parameters in a grid and ensures the safe feeding of decentral produced electrical energy into the grid.

- Monitoring of the voltage with up to 2 thresholds for over- and undervoltage
- Monitoring of the frequency with up to 2 thresholds for over- and underfrequency
- ROCOF (rate of change of frequency) and vector shift detection
- In compliance with several local standards
- Modbus connection for selected devices

Measuring and monitoring relays
 Offer overview

Insulation monitoring relays

- Monitoring of electrically isolated supply mains for insulation resistance failure
- Detection of initial faults
- Protection against earth faults

Temperature monitoring relays

Acquisition, messaging and regulation of temperatures of solid, liquid and gaseous media in processes and machines

- Motor and system protection
- Control panel temperature monitoring
- Frost monitoring
- Temperature limits for process variables, e.g. in the packing or electroplating industry
- Control of systems and machines like heating, air-conditioning and ventilation systems, solar collectors, heat pumps or hot water supply systems
- Bearing, gear oil and coolant monitoring

Thermistor motor protection

CM-MSE and CM-MSS provide full protection of motors with integrated PTC resistor sensors.

Protection of motors against thermal overload, e. g. caused by insufficient cooling, heavy load starting conditions, undersized motors, etc.

Liquid level monitoring relays

- Protection of pumps against dry running
- Protection against container overflow
- Control of liquid levels
- Detection of leaks
- Control of mixing ratios

Measuring and monitoring relays

Product range

CM-N range: Multifunctional

- 45 mm wide housing
- Output contacts: 2 c/o (SPDT) contacts
- Continuous voltage range (24-240 V AC/DC) or single-supply
- Setting and operation via front-face operating controls
- Adjustment of threshold values and switching hysteresis via direct reading scale
- Adjustable time delays
- Integrated and snap-fitted front-face marker label
- Sealable transparent cover (accessory)

CM-S range:

Universal and multifunctional

- Only 22.5 mm wide housing
- Output contacts: 1 or 2 c/o (SPDT) contacts
- One supply voltage range or supplied by measuring circuit
- Setting and operation via front-face operating controls
- Adjustment of threshold values and switching hysteresis via direct reading scale
- Integrated and snap-fitted front-face marker
- Snap-on housing: The relays can be placed on a DIN rail tool-free - just snap it on or remove it tool-free
- Sealable transparent cover (accessory)

CM-E range: Economy

- Only 22.5 mm wide housing
- Output contacts: $1 \mathrm{c} / \mathrm{o}$ contact or $1 \mathrm{n} / \mathrm{o} \mathrm{contact}$
- One supply voltage range
- One monitoring function
- Cost-efficient solution for OEM applications
- Preset monitoring ranges

Single-phase current monitoring relays
 Selection table

\begin{tabular}{|c|}
\hline \& \& \& \& \& \& \& 0
0
0
0
0
\vdots
0
0
0

\vdots
\vdots \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline $$
\stackrel{\otimes}{\stackrel{2}{2}}
$$ \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{7} \\
& \vdots \\
& \tilde{u} \\
& \tilde{N} \\
& \sum_{U}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \underset{\sim}{7} \\
& \underset{U}{2} \\
& \underset{\sim}{u} \\
& \sum_{0}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& U \\
& \underset{U}{7} \\
& \underset{U}{n} \\
& \sim \\
& \sum_{U}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \underset{\sim}{7} \\
& \dot{N} \\
& \tilde{N} \\
& \sum_{u}^{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sim \\
& \underset{\sim}{7} \\
& \dot{\omega} \\
& \tilde{N} \\
& \sum_{u}^{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \underset{\sim}{1} \\
& \dot{N} \\
& \tilde{\sim} \\
& \omega \\
& \sum_{u}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sim \\
& \underset{\sim}{u} \\
& \omega \\
& \tilde{\sim} \\
& \sum_{u}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sim \\
& \underset{\sim}{u} \\
& \omega \\
& \tilde{\sim} \\
& \omega \\
& \sum_{u}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sim \\
& \underset{\sim}{u} \\
& \tilde{u} \\
& \tilde{\sim} \\
& \sum_{u}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{n} \\
& \underset{\sim}{n} \\
& \underset{\sim}{w} \\
& \sum_{u}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \underset{\sim}{n} \\
& \underset{\sim}{n} \\
& \tilde{N} \\
& \sum_{U}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{n} \\
& \underset{\sim}{n} \\
& \tilde{\sim} \\
& \tilde{N} \\
& \sum_{u}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \underset{\sim}{n} \\
& \underset{\sim}{\tilde{N}} \\
& \underset{\sim}{1} \\
& \sum_{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sim \\
& \underset{\sim}{n} \\
& \tilde{\sim} \\
& \tilde{N} \\
& \sum_{u}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \underset{\sim}{n} \\
& \tilde{N} \\
& \tilde{v} \\
& \sum_{U}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{\tilde{N}} \\
& \underset{\sim}{n} \\
& \tilde{N} \\
& \sum_{u}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{N} \\
& \underset{\sim}{n} \\
& \underset{\sim}{N} \\
& \sum_{u}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \tilde{N} \\
& \tilde{N} \\
& \tilde{N} \\
& \tilde{N} \\
& \sum_{U}^{1}
\end{aligned}
$$
\] \& n

\sum_{n}^{n}
\sum_{U}^{N}
\sum_{0}^{N} \& n
\sum_{i}^{n}
\sum_{U}^{N}

\sum_{U}^{1} \& \[
$$
\begin{aligned}
& \mathcal{N} \\
& \sum_{N} \\
& N \\
& \tilde{N} \\
& \sum_{U}^{1}
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{aligned}
& N \\
& \sum_{U}^{1}
\end{aligned}
$$
\]

\hline \multicolumn{25}{|l|}{Rated control supply voltage $\mathrm{U}_{\text {s }}$}

\hline 24-240 V AC/DC \& \square \& \square \& \& \& \& \& \square \& \& \& ■ \& ■ \& \& \& \& \& \square \& \& \& \square \& \square \& \square \& \square \& \square \& \square

\hline 110-130 V AC \& \& \& \square \& \square \& \& \& \& \square \& \& \& \& \square \& \square \& \& \& \& \square \& \& \& \& \& \& \&

\hline 220-240 V AC \& \& \& \& \& \square \& ■ \& \& \& \square \& \& \& \& \& \square \& \square \& \& \& \square \& \& \& \& \& \&

\hline \multicolumn{25}{|l|}{Measuring ranges AC/DC}

\hline 3-30 mA \& ■ \& \square \& ■ \& ■ \& \square \& ■ \& \& \& \& ■ \& \square \& ■ \& \square \& ■ \& ■ \& \& \& \& ■ \& ■ \& \& ■ \& \square \&

\hline 10-100 mA \& \square \& \square \& \square \& \square \& \square \& \square \& \& \& \& \square \& \square \& \square \& \square \& \square \& \square \& \& \& \& \square \& \square \& \& \square \& \square \&

\hline 0.1-1 A \& \square \& \square \& \square \& \square \& \square \& \square \& \& \& \& \square \& \square \& \square \& \square \& \square \& \square \& \& \& \& \square \& \square \& \& \square \& \square \&

\hline 0.3-1.5 A \& \& \& \& \& \& \& \square \& \square \& \square \& \& \& \& \& \& \& \square \& \square \& \square \& \& \& \square \& \& \& \square

\hline 1-5A \& \& \& \& \& \& \& \square \& \square \& \square \& \& \& \& \& \& \& \square \& \square \& \square \& \& \& \square \& \& \& \square

\hline 3-15 A \& \& \& \& \& \& \& \square \& \square \& \square \& \& \& \& \& \& \& \square \& \square \& \square \& \& \& \square \& \& \& \square

\hline \multicolumn{25}{|l|}{Monitoring function}

\hline Over- or undercurrent \& \square \& \square \& ■ \& ■ \& \square \& ■ \& \square \& \square \& \square \& ■ \& ■ \& ■ \& \square \& ■ \& \square \& \square \& ■ \& \square \& \square \& \square \& \square \& \& \&

\hline Window current monitoring \& \square \& \square \& \square

\hline Latching \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& sel \& sel \& sel \& sel \& sel \& sel

\hline Open-circuit or closed-circuit principle \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& sel \& sel \& sel \& sel \& sel \& sel

\hline \multicolumn{25}{|l|}{Timing functions for tripping delay}

\hline ON-delay, 0.1-30 s \& \& \& \& \& \& \& \& \& \& adj \& \& \&

\hline ON- or OFF-delay, 0.1-30 s \& sel \& sel \& sel

\hline \multicolumn{25}{|l|}{Output}

\hline c/o contact \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2

\hline \multicolumn{25}{|l|}{Connection type}

\hline Push-in terminals \& \& ■ \& \& ■ \& \& ■ \& \& \& \& \& ■ \& \& ■ \& \& \square \& \& \& \& \& ■ \& \& \& \square \&

\hline Double-chamber cage connection terminals \& \square \& \& \square \& \& \square \& \& \square \& \square \& \square \& \square \& \& \square \& \& \square \& \& \square \& \square \& \square \& \square \& \& \square \& \square \& \& \square

\hline
\end{tabular}

adj: adjustable
sel: selectable

Single-phase voltage monitoring relays Selection table

$\stackrel{\text { ® }}{2}$	$\begin{aligned} & \sim \\ & \underset{\sim}{n} \\ & \underset{U}{u} \\ & \sum_{i}^{1} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{H} \\ & \underset{\sim}{u} \\ & \underset{U}{1} \\ & \sum_{i}^{1} \end{aligned}$	$\begin{aligned} & \sim \\ & \underset{\sim}{U} \\ & \underset{U}{u} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \underset{\sim}{n} \\ & {\underset{U}{n}}_{1}^{1} \end{aligned}$	$\begin{aligned} & \sim \\ & \tilde{\sim} \\ & \underset{U}{u} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \stackrel{\imath}{1} \\ & \underset{\sim}{n} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \underset{\sim}{u} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{U}{u} \\ & \sum_{i}^{1} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{u} \\ & \underset{U}{u} \\ & \sum_{u}^{1} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{n} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \tilde{\sim} \\ & \underset{\sim}{n} \\ & \underset{U}{1} \\ & \sum_{1}^{1} \end{aligned}$	$\begin{aligned} & \stackrel{n}{N} \\ & \underset{\sim}{u} \\ & \sum_{U}^{1} \end{aligned}$	\sum_{N}^{n} \sum_{U}^{1} \sum_{U}^{1}	\sum_{i}^{0} \sum_{U}^{U} 	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{u} \\ & \underset{U}{U} \\ & \sum_{U}^{1} \end{aligned}$	$\xrightarrow[\sim]{\sim}$
Rated control supply voltage U_{s}																
24-240 V AC/DC	\square	■					■	\square					\square	\square	\square	\square
110-130 V AC			\square	\square					■	■						
220-240 V AC					\square	\square					\square	\square				
Measuring ranges AC/DC																
3-30V	\square	■	■	■	\square	\square	\square	\square	\square							
6-60 V	\square															
$30-300 \mathrm{~V}$	\square															
60-600 V	\square															
Monitoring function																
Over- or undervoltage	\square	■	■	\square	\square	■	\square	■	■	■	■	■	\square	\square		
Windows voltage monitoring															\square	\square
Latching													sel	sel	sel	sel
Open-circuit or closed-circuit principle													sel	sel	sel	sel
Timing functions for tripping delay																
ON-delay, 0.1-30 s							adj									
ON- or OFF-delay, 0.1-30 s															sel	sel
Output																
c/o contact	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2
Connection type																
Push-in terminals		■		■		■		■		■		\square		\square		\square
Double-chamber cage connection terminals	\square		■		\square		\square									

adj: adjustable
sel: selectable

Three－phase monitoring relays

Selection table－singlefunctional

			1SVR550882R9500	1SVR550870R9400					1SVR740824R9300	1SVR730784R2300	1SVR740784R2300		1SVR740784R3300		1SVR740794R1300		1SVR740794R3300		1SVR740794R2300	1SVR730774R1300		1SVR730774R3300	
	$\stackrel{0}{0}$	$\begin{aligned} & \text { 山 } \\ & 0 \\ & \sum_{u}^{1} \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \text { © } \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \text { ய } \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \text { ய } \\ & \underset{\sim}{1} \\ & \sum_{u}^{1} \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \stackrel{\rightharpoonup}{\square} \\ & \sum_{U}^{1} \end{aligned}$		$$	$\begin{aligned} & a \\ & \dot{\sim} \\ & \stackrel{1}{a} \\ & \sum_{u}^{\prime} \end{aligned}$	$\begin{aligned} & n \\ & n \\ & \cdots \\ & \omega \\ & \underset{\sim}{n} \\ & \sum_{u}^{1} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \stackrel{y}{n} \\ & \dot{N} \\ & \underset{\sim}{n} \\ & \sum_{u}^{1} \end{aligned}$	$\begin{aligned} & \sim \\ & \underset{寸}{\sim} \\ & \dot{\sim} \\ & \sum_{u}^{1} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{\nabla} \\ & \dot{\sim} \\ & \underset{0}{1} \\ & \sum_{u}^{1} \end{aligned}$	$$	$\begin{aligned} & \stackrel{n}{7} \\ & \stackrel{1}{n} \\ & \stackrel{y}{n} \\ & \underset{u}{1} \\ & \sum_{u}^{1} \end{aligned}$		$\begin{aligned} & \text { à } \\ & \stackrel{y}{+} \\ & \dot{d} \\ & \sum_{u}^{1} \end{aligned}$	n 0 0 0 \sum_{0} \sum_{u}^{1}	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{N} \\ & 0 \\ & \sum_{u}^{1} \end{aligned}$		$$	$\text { CM-PAS. } 41 \mathrm{~S}$	
Rated control supply voltage $\mathrm{U}_{\text {s }}$																							
Phase to phase																							
160－300 V AC														\square	\square					\square	\square		
200－400 V AC																		\square	\square				
200－500 V AC							\square	\square	\square														
208－440 V AC						\square																	
$300-500$ V AC																\square	\square					\square	\square
$320-460$ V AC				\square	\square																		
380 V AC										\square	\square												
$380-440$ V AC		\square	\square																				
400 V AC												\square	\square										
Phase to neutral																							
185－265 V AC				\square																			
220－240 V AC		\square																					
Rated frequency																							
$50 / 60 \mathrm{~Hz}$		\square	\square	\square	\square	\square	\square	■	\square	■	\square	\square											
Suitable for monitoring																							
Single－phase mains		\square		\square																			
Three－phase mains		\square																					
Monitoring function																							
Phase failure		\square	\square	\square	\square	■	\square	\square	\square	－	\square	■	\square	\square	\square	\square							
Phase sequence						\square	\square	\square	\square	sel	－	\square	\square	\square									
Overvoltage				\square	\square					\square													
Undervoltage				\square	\square					\square													
Unbalance																				\square	\square	\square	\square
Neutral ${ }^{1)}$		\square		\square																			
Thresholds																							
adjustable（adj）or fixed（fix）		fix	adj																				
Timing functions for tripping delay																							
ON delay								fix	fix											sel	sel	sel	sel
On and OFF delay		fix	fix	fix	fix	fix	fix			adj													
Connection type																							
Push－in terminals											\square												
Double－chamber cage connection terminals										\square													

[^0]adj：adjustable
sel：selectable
fix：fixed

Three－phase monitoring relays

Selection table－multifunctional

										00عtys880ヤLy^St			00ع8ปL8เ0GLとへSI					0088を68เ09LとへSI
$\stackrel{\otimes}{\grave{2}}$	$\begin{aligned} & \sim \\ & \underset{\sim}{7} \\ & \dot{\omega} \\ & \sum_{i}^{1} \\ & \sum_{U} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{7} \\ & \dot{U} \\ & \sum_{i}^{1} \\ & \sum_{U}^{\prime} \end{aligned}$	$\begin{aligned} & \text { U } \\ & \underset{\sim}{N} \\ & \sum_{i}^{1} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \stackrel{N}{N} \\ & \dot{N} \\ & \sum_{i}^{1} \\ & \sum_{U} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{m} \\ & \underset{N}{n} \\ & \sum_{i}^{1} \\ & \sum_{U} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\mu}{m} \\ & \dot{N} \\ & \sum_{i}^{1} \\ & \sum_{U}^{\prime} \end{aligned}$	$\begin{aligned} & n \\ & \underset{\sim}{7} \\ & \dot{N} \\ & \sum_{i}^{1} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{7} \\ & \dot{N} \\ & \sum_{i}^{1} \\ & \sum_{i}^{1} \end{aligned}$	$\begin{aligned} & N_{n} \\ & \underset{\sim}{n} \\ & \sum_{i}^{1} \\ & \sum_{U}^{\prime} \end{aligned}$	$\begin{aligned} & \sum_{n}^{n} \\ & \underset{N}{n} \\ & \sum_{i}^{1} \\ & \sum_{U}^{1} \end{aligned}$		$\begin{aligned} & \stackrel{0}{m} \\ & \stackrel{y}{n} \\ & \dot{N} \\ & \sum_{i}^{1} \\ & \sum_{U}^{\prime} \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \tilde{N} \\ & \sum_{0} \\ & \sum_{i}^{1} \\ & \sum_{U} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Nn } \\ & \text { n } \\ & \sum_{n}^{1} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \text { Un } \\ & \text { O} \\ & \underset{0}{2} \\ & \sum_{i}^{1} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { Z } \\ & \sum_{i}^{1} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{N}{Z} \\ & \sum_{i}^{1} \\ & \sum_{U} \end{aligned}$	
Rated control supply voltage U_{s}																		
Phase to phase																		
160－300 V AC					■	■												
300－500 V AC							\square	\square			\square	\square						
350－580 V AC													\square	\square				
450－720 V AC															\square	\square		
530－820 V AC																	\square	\square
Phase to neutral																		
90－170 V AC	■	\square																
180－280 V AC			\square	\square					\square	\square								
Rated frequency																		
$50 / 60 \mathrm{~Hz}$	■	■	■	■	■	■	■	■					■	■	\square	■	■	\square
$50 / 60 / 400 \mathrm{~Hz}$									\square	\square	\square	\square						
Suitable for monitoring																		
Mains with harmonic content									\square	\square	\square	\square						
Single－phase mains	\square	\square	\square	\square					\square	\square								
Three－phase mains	\square	\square	\square	\square	■	\square	■	■	\square									
Monitoring function																		
Phase failure	■	\square	\square	■	\square	\square	\square	－	\square	■	■	■	\square	■	■	■	\square	\square
Phase sequence	sel	adj																
Automatic phase sequence correction									adj									
Overvoltage	\square																	
Undervoltage	\square																	
Unbalance	\square																	
Interrupted neutral monitoring ${ }^{1)}$	\square	\square	\square	\square					\square	\square								
Thresholds																		
Adjustable（adj）	adj																	
Timing functions for tripping delay																		
On－or OFF delay	adj																	
Connection type																		
Push－in terminals		■		■		\square		\square		■		\square		\square		\square		\square
Double－chamber cage connection terminals	\square		■		\square		\square											

[^1]adj：adjustable
sel：selectable

Grid feeding monitoring relays
 Selection table

Rated control supply voltage Us										
24-240 V AC/DC		\square	-		\square		\square	-		-
Standard										
CEI 0-21		-								
VDE AR-N 4105, VDE AR-N 4110			\square		\square					
ENA G98, G99							\square	\square		
DRRG standard of DEWA										\square
Rated frequency										
DC or 50 Hz		-	-		-					
DC or $50 / 60 \mathrm{~Hz}$							\square	\square		\square
Modbus RTU		\square			\square			\square		\square
Suitable for monitoring										
Single-phase mains		\square	-		\square		\square	-		\square
Three-phase mains		\square	\square		\square		\square	\square		\square
Monitoring function										
Over-/undervoltage		-	\square		\square		\square	-		\square
Over-/underfrequency		\square	-		\square		\square	-		\square
ROCOF (rate of change of frequency)		\square	\square		\square		\square	-		-
10 minutes average value		\square	-		\square		\square	-		\square
Vector shift			-		\square		\square	\square		\square
Thresholds		adj	ad		ad		adj	ad		adj

Insulation monitoring relays
 Selection table

		OOZOצOL90ヤLy^SI						
$\stackrel{\otimes}{\stackrel{2}{\gtrless}}$	$\begin{aligned} & \sim \\ & \tilde{N} \\ & \sum_{i}^{n} \\ & \sum_{U}^{1} \end{aligned}$	$$	$\begin{aligned} & n \\ & \sum_{n}^{n} \\ & \sum_{U}^{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \sum_{i}^{n} \\ & \sum_{i}^{1} \end{aligned}$	$\begin{aligned} & n \\ & \sum_{1}^{2} \\ & \sum_{3}^{1} \\ & \sum_{U}^{1} \end{aligned}$		$\begin{aligned} & \sum_{3}^{0} \\ & \sum_{U}^{\frac{1}{1}} \end{aligned}$	
Rated control supply voltage \mathbf{U}_{5}								
24-240 V AC/DC	■	■	■	■	■	■		
24 V DC							\square	\square
Measuring voltages								
250 V AC (L-PE)			■	■				
$400 \mathrm{~V} \mathrm{AC} \mathrm{(L-PE)}$	\square	\square			\square	\square		
690 V AC (L-PE)					$\square{ }^{(1)}$	$\square^{(1)}$	$\square{ }^{(2)}$	
1000 V AC (L-PE)								- ${ }^{(3)}$
300 V DC (L-PE)			\square	■				
600 V DC (L-PE)					\square	■		
690 V DC (L-PE)							$\square{ }^{(2)}$	
1000 V DC (L-PE)					$\square{ }^{(1)}$	$\square^{(1)}$		$\square{ }^{(3)}$
Measuring range								
1-100 k Ω	\square	■	\square	■	■	\square		
2-200 k					■	■		
2-250 k Ω							\square	\square
System leakage capacitance, max.								
$10 \mu \mathrm{~F}$	■	■	\square	■				
$20 \mu \mathrm{~F}$					■	■		
$1000 \mu \mathrm{~F}$							\square	
$3000 \mu \mathrm{~F}$								\square
Output								
$1 \mathrm{c} / \mathrm{o}$	\square	\square	\square	\square				
$1 \times 2 \mathrm{c} / \mathrm{o}$ or $2 \times 1 \mathrm{c} / \mathrm{o}$					■	\square		
$2 \mathrm{c} / \mathrm{o}$							\square	\square
Operating principle								
Open-circuit principle	\square	\square	\square	\square			\square	\square
Open- or closed-circuit principle adjustable					■	\square		
Test								
Front-face button or control input	\square	\square	\square	■	\square	\square	\square	\square
Reset								
Front-face button or control input	\square							
Fault storage / latching configurable	\square	\square	\square	\square	\square	\square		
Non volatile storage configurable	\square	\square	\square	\square	■	\square		
Interrupted wire detection					\square	\square	\square	\square
Threshold values configurable	1	1	1	1	2	2	2	2
Control input (measuring input deactivation)								\square
Connection type								
Push-in terminals		\square		\square		\square		
Double-chamber cage connection terminals	\square		\square		\square			
Screw terminals							\square	\square
1) With coupling unit CM-IVN $\begin{array}{ll}\text { screw version } \\ \text { push-in version }\end{array}$	CM-IVN.S: 1SVR750669R9400 CM-IVN.P: 1SVR760669R9400							

2) Allowed voltage range of the supervised network: $0-760 \mathrm{VAC} / 0-1000 \mathrm{~V}$
3) Allowed voltage range of the supervised network: 0-1100 V AC / 0-1500 V DC

Thermistor motor protection relays
 Selection table

Characteristics

ATEX approval				\square	\square					\square	\square					\square	■	\square	\square	\square	■	\square	\square	\square	\square
Number of sensor circuits	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2
Single or accumulative evaluation																								\square	\square
Number of LEDs				3	3	2	2	2	2	3	3	2	2	2	2	3	3	3	3	3	3	3	3	3	3

Contacts

Reset
Manual

ua												-	-	-	-	-	-	-	-	-	-	-	-	-	-
Remote												\square	■	\square											
Auto	\square	-	\square	\square	$\square{ }^{(1)}$	$\square{ }^{(1)}$	■ ${ }^{(1)}$	\square (1)	\square (1)	$\square{ }^{\text {(1) }}$	$\square{ }^{(1)}$	$\square{ }^{(1)}$	$\square{ }^{\text {(1) }}$	$\square{ }^{(1)}$	$\square{ }^{\text {(1) }}$	$\square{ }^{(1)}$	- (2)	$\square{ }^{\text {(2) }}$							
Test button																\square	■								
Functions																									
Short-circuit detection										■	\square					\square	\square	\square	\square	-	\square				
Short-circuit detection, configurable																						\square	\square	\square	■
Dynamic interrupted wire detection				\square	\square					\square	\square					\square	■								
Non-volatile fault storage				\square	\square					\square	\square					\square	\square								
Non-volatile fault storage, configurable																						\square	\square	\square	\square

Rated control supply voltage \mathbf{U}_{5}

24 V AC	\square																								
110-130 V AC		\square																							
220-240 V AC			\square																						
24-240 V AC/DC				\square	\square					\square	\square					\square	\square					\square	\square	\square	\square
$24 \mathrm{~V} \mathrm{AC/DC}$						\square	■					\square	\square					\square	\square						
110-130 V AC, 220-240 V AC								\square	\square					\square	\square					\square	\square				

Push-in terminals				\square		■		■		\square		\square		\square											
Double-chamber cage connection terminals					\square		\square		\square		■		\square		■										
Screw	\square	\square	\square																						

1) For automatic reset, connect terminals S 1 to T 2 .
2) For automatic reset, connect Terminals S1 to $1 \mathrm{~T} 2 / 2 \mathrm{~T} 2$.

Temperature monitoring relays
 Selection table

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Liquid level monitoring relays
 Selection table

Primary switch mode power supplies

32 Offer overview
34 Selection table

Primary switch mode power supplies Offer overview

Power supplies for building applications

Power supplies for industrial applications

CP-D range

Distribution panel design

The CP-D range of power supply units in MDRC design (modular DIN rail components) fits into all domestic installation and distribution panels. With their width between 18 to 90 mm only, the CP-D range switch mode power supplies are ideally suited for installation in distribution panels. The range is optimized for world-wide applications: The CP-D power supplies can be supplied with 90-264 V AC or 120-375 V DC. The continuously adjustable output voltage (CP-D > 10 W) ensures optimal adaption to the application, e.g. compensating the voltage drop caused by a long line length. Additional redundancy unit CP-RUD available to establish true redundancy is available.

CP-E range
 Economy range

The CP-E range offers enhanced functionality while the number of different types has been considerably reduced. Now all power supply units can be operated at an ambient temperature of up to $+70^{\circ} \mathrm{C}$. The CP-E range 24 V devices over 18 W offer an output/ contact for monitoring of the output voltage and remote diagnosis. Optimized for world-wide applications, the CP-E power supplies can be supplied within a wide range of AC or DC voltage. The output voltage is continuously adjustable, ensuring optimal adaptation to the application, e.g. compensating the voltage drop caused by a long line length. For decoupling of parallel connected power supplies below or equal 56 V , redundancy modules are available in order to achieve true redundancy.

CP-T Three-phase range

The CP-T range of three-phase power supply units perfectly complements existing power supply offering in terms of design and functionality, giving you more advanced options for your threephase applications. Solid state output for function monitoring and remote diagnostics is available. The range is to be used in 340-575 V AC or 480-820 V DC supply systems. Its continuously adjustable output voltage ensures optimal adaptation to the application, e.g. compensating the voltage drop caused by a long line length.

Primary switch mode power supplies
 Offer overview

Power supplies for industrial applications

CP-C. 1 range

High-performance range

The CP-C. 1 power supplies are ABB's high-performance and most advanced range. With excellent efficiency, high reliability and innovative functionality it is prepared for the most demanding industrial applications. These power supplies have a 150% integrated power reserve and operate at an efficiency of up to 94%. They are equipped with overheat protection and active power factor correction. Combined with a broad AC and DC input voltage range and extensive worldwide approvals the CP-C. 1 power supplies are the preferred choice for professional DC applications. Giving the power to control.

CP-B range

Short time buffers
$A B B$ offers an innovative and completely maintenance- free product range for buffering the 24 V DC supply in case of interrupted mains on the primary side of the switch mode power supply.

- Ultra cap based buffer modules for short time UPS systems
- Rated input voltage 24 V DC
- Rated currents 3 A, 10 A and 20 A
- Expandable with CP-B EXT. 2 module
- LEDs for status indication
- High efficiency, higher than 90\%
- Signaling and status outputs
- Buffering times at 100% load current from 13 s to 38 s (depending on device)

Primary switch mode power supplies

Selection table - Single phase

										O 0 O o								\circ 0 								$\begin{aligned} & \stackrel{-1}{0} \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & \underset{\sim}{n} \\ & n \end{aligned}$		
	Sin	gle-	pha																									
	CP-D						CP-E													CP-	C. 1							
Rated output voltage							\square																					
	\square	\square						\square	■																			
			■	\square	■	\square				■	\square	■	■	■	■					■	■	\square	■	■	\square	■	\square	■
																\square	\square	\square	■									
Rated output current			\square																									
																\square												
										\square																		
	\square																											
											\square						\square											
				\square																								
		■																										
					\square			\square				\square																
							\square																					
						\square																						
													■					■		\square			■			■		
									\square					\square					■		\square			\square			\square	
															\square							\square			\square			\square
Rated output power	\square		\square																									
							\square																					
										■																		
		\square																										
				\square				\square			\square					\square												
					\square							\square					\square											
						\square																						
									\square				\square							\square			\square			\square		
														■				■			■			\square			\square	
															\square				\square			\square			\square			\square
Rated 100-240 V AC	\square	■	■	■	\square	■	■	■		\square	\square	■				■	■			\square	■	■	■	■	■	■	■	■
input $115 / 230 \mathrm{~V} \mathrm{AC}$ voltage auto select									■				\square	\square				■										
$115-230 \mathrm{~V} \mathrm{AC}$															\square				■									
DC input voltage range																				\square	■	■	\square	\square	\square	\square	\square	\square
								\square			■	\square				\square	\square											
	\square			\square					\square				\square															
									\square				\square	■				\square										
																				\square								
Adjustable output voltage		\square		\square	-	\square	■	\square																				
Integrated input fuse	\square	■	\square																									
Short-circuit stable	\square																											
Fold-forward behavior (U/I)		\square		\square	\square	\square		\square	\square		\square	\square	\square	\square	■	\square	\square	\square	\square	\square	\square	■	■	\square	\square	\square	\square	\square
Fold-back behavior (hiccup)	\square		\square				\square			\square																		
Power factor correction									pas				pas	pas	act			pas	act									
Signalling contact											\square	\square	\square	\square	\square					\square	\square	■	\square	\square	\square	\square	\square	\square
Extended temp. range	\square	\square	\square	\square	■	\square		\square	\square		\square				\square	\square	\square											
Parallel connection							\square	\square	3	\square	\square	\square	3	3	3	\square	\square	3	3	5	5	5	5	5	5	5	5	5
Serial connection	\square	2	\square	\square	\square	2	2	2	\square	\square	2	2	2	2	2	2	2	2	2	2	2							
Coated PCBA																							■	\square	\square			

[^2]
Primary switch mode power supplies

Selection table - Three phase

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Interface relays and optocouplers

38	Offer overview
40	Selection table
40	CR-S range
42	CR-S range complete versions
43	CR-P range
45	CR-P range complete versions
46	CR-M range
51	CR-M range complete versions
53	CR-P/M function modules
54	CR-U range
56	CR-U function modules
57	Boxed interface relays R600 range

Interface relays and optocouplers Offer overview

CR-S range
 The slim line of interface relays and optocouplers

The pluggable interface relays and optocouplers of the CR-S Range are used for electrical isolation, amplification and signal matching between the electronic controlling, e.g. PLC, field bus systems and the sensor / actuator level. The CR-S Range combines the flexibility of a modular system and the ability of switching high currents on a small footprint thus can be used in applications where space saving is essential. The CR-S range also includes complete versions consisting of a relay, socket and marker.

CR-P range

The pluggable pcb interface relays and optocouplers
The pluggable interface relays of the CR-P range are used for electrical isolation, amplification and signal matching between the electronic controlling, e.g. PLC, field bus systems and the sensor / actuator level. The CR-P range offers highest current switching in an IP67 rated relay housing. Furthermore, nine different coil voltages are available to suit world wide applications and even gold contact version are available which is essential when it comes to switch sensitive signals. The CR-P range also includes complete versions consisting of a relay, socket, holder, marker and function module.

Interface relays and optocouplers Offer overview

CR-M range

The pluggable miniature interface relays

The pluggable interface relays of the CR-M range are used for electrical isolation, amplification and signal matching between the electronic controlling, e.g. PLC, field bus systems and the sensor / actuator level. The CR-M range offers up to 4 contacts in one relay and a built in test button which makes a circuit check fast and easy. 14 different coil voltages are available to suit world wide applications and even gold contact versions are available which is essential when it comes to switch sensitive signals. The CR-M range also includes complete versions consisting of a relay, socket, holder, marker and where applicable a function module.

CR-U range

The pluggable universal interface relays

The pluggable interface relays of the CR-U range are used for electrical isolation, amplification and signal matching between the electronic controlling, e.g. PLC, field bus systems and the sensor / actuator level. The CR-U range offers up to 3 contacts in one relay and a built in test button which makes a circuit check fast and easy. 13 different coil voltages are available to suit world wide applications.

R600 range

Boxed interface relays and optocouplers

Boxed interface relays of the R600 range are used for electrical isolation, amplification and signal matching between the electronic controlling, e.g. PLC, field bus systems and the sensor / actuator level. The relay itself is built in thus the perfect solution because this design fulfills highest vibration requirements. The compact design and different connection terminal possibilities further optimize your panel installation.

CR-S range

Selection table

How to use the selection table

Choose the desired control supply voltage from the column "Control voltage", e.g. " 5 V DC".
Choose the desired kind of connection terminal from the column "Connection terminal", e.g. "spring".
Choose the desired material of contact from the column "Contact Material" e.g. "gold plated".

Control voltage	Connection terminal	Contact material	Socket type	Socket order code	Relay type	Relay order code
5 V DC	screw	standard	CR-S006/024VDC1SS	1SVR405521R1100	CR-S005VDC1R	1SVR405501R1010
		gold plated	CR-S006/024VDC1SS	1SVR405521R1100	CR-S005VDC1RG	1SVR405501R1020
	spring	standard	CR-S006/024VDC1SZ	1SVR405521R1200	CR-S005VDC1R	1SVR405501R1010
		gold plated	CR-S006/024VDC1SZ	1SVR405521R1200	CR-S005VDC1RG	1SVR405501R1020
12 VAC	screw	standard	CR-S012/024VADC1SS	1SVR405521R3100	CR-S012VDC1R	1SVR405501R2010
		gold plated	CR-S012/024VADC1SS	1SVR405521R3100	CR-S012VDC1RG	1SVR405501R2020
	spring	standard	CR-S012/024VADC1SZ	1SVR405521R3200	CR-S012VDC1R	1SVR405501R2010
		gold plated	CR-S012/024VADC1SZ	1SVR405521R3200	CR-S012VDC1RG	1SVR405501R2020

i^{m}

Example
When you have chosen 5 V DC as control supply voltage, spring connection as connection terminal and gold plated as contact material the following order codes and type designators are valid:

Socket: CR-S006/024VDC1SZ, 1SVR405521R1200
Relay: CR-S005VDC1RG, 1SVR405501R1020

CR-S range

Selection table
-
CR-S range relay assemblies

Control voltage	Connection terminal	Contact material	Socket type	Socket order code	Relay type	Relay order code
$\overline{5 V D C}$	screw	standard	CR-S006/024VDC1SS	1SVR405521R1100	CR-S005VDC1R	1SVR405501R1010
		gold plated	CR-S006/024VDC1SS	1SVR405521R1100	CR-S005VDC1RG	1SVR405501R1020
	spring	standard	CR-S006/024VDC1SZ	1SVR405521R1200	CR-S005VDC1R	1SVR405501R1010
		gold plated	CR-S006/024VDC1SZ	1SVR405521R1200	CR-S005VDC1RG	1SVR405501R1020
12 V DC	screw	standard	CR-S006/024VDC1SS or CR-S012/024VADC1SS	$\begin{aligned} & \text { 1SVR405521R1100 or } \\ & \text { 1SVR405521R3100 } \end{aligned}$	CR-S012VDC1R	1SVR405501R2010
		gold plated	$\begin{aligned} & \text { CR-S006/024VDC1SS or } \\ & \text { CR-S012/024VADC1SS } \end{aligned}$	$\begin{aligned} & \text { 1SVR405521R1100 or } \\ & \text { 1SVR405521R3100 } \end{aligned}$	CR-S012VDC1RG	1SVR405501R2020
	spring	standard	$\begin{aligned} & \text { CR-S006/024VDC1SZ or } \\ & \text { CR-S012/024VADC1SZ } \end{aligned}$	$\begin{aligned} & \text { 1SVR405521R1200 or } \\ & \text { 1SVR405521R3200 } \end{aligned}$	CR-S012VDC1R	1SVR405501R2010
		gold plated	$\begin{aligned} & \text { CR-S006/024VDC1SZ or } \\ & \text { CR-S012/024VADC1SZ } \end{aligned}$	$\begin{aligned} & \text { 1SVR405521R1200 or } \\ & \text { 1SVR405521R3200 } \end{aligned}$	CR-S012VDC1RG	1SVR405501R2020
12 V AC	screw	standard	CR-S012/024VADC1SS	1SVR405521R3100	CR-S012VDC1R	1SVR405501R2010
		gold plated	CR-S012/024VADC1SS	1SVR405521R3100	CR-S012VDC1RG	1SVR405501R2020
	spring	standard	CR-S012/024VADC1SZ	1SVR405521R3200	CR-S012VDC1R	1SVR405501R2010
		gold plated	CR-S012/024VADC1SZ	1SVR405521R3200	CR-S012VDC1RG	1SVR405501R2020
24 V DC	screw	standard	CR-S006/024VDC1SS or CR-S012/024VADC1SS	1SVR405521R1100 or 1SVR405521R3100	CR-S024VDC1R	1SVR405501R3010
		gold plated	CR-S006/024VDC1SS or CR-S012/024VADC1SS	1SVR405521R1100 or 1SVR405521R3100	CR-S024VDC1RG	1SVR405501R3020
	spring	standard	CR-S006/024VDC1SZ or CR-S012/024VADC1SZ	$\begin{aligned} & \text { 1SVR405521R1200 or } \\ & \text { 1SVR405521R3200 } \end{aligned}$	CR-S024VDC1R	1SVR405501R3010
		gold plated	$\begin{aligned} & \text { CR-S006/024VDC1SZ or } \\ & \text { CR-S012/024VADC1SZ } \end{aligned}$	1SVR405521R1200 or 1SVR405521R3200	CR-S024VDC1RG	1SVR405501R3020
24 V AC	screw	standard	CR-S012/024VADC1SS	1SVR405521R3100	CR-S024VDC1R	1SVR405501R3010
		gold plated	CR-S012/024VADC1SS	1SVR405521R3100	CR-S024VDC1RG	1SVR405501R3020
	spring	standard	CR-S012/024VADC1SZ	1SVR405521R3200	CR-S024VDC1R	1SVR405501R3010
		gold plated	CR-S012/024VADC1SZ	1SVR405521R3200	CR-S024VDC1RG	1SVR405501R3020
$48 \mathrm{~V} \mathrm{AC/DC}$	screw	standard	CR-S048/060VADC1SS	1SVR405521R5100	CR-S048VDC1R	1SVR405501R4010
		gold plated	CR-S048/060VADC1SS	1SVR405521R5100	CR-S048VDC1RG	1SVR405501R4020
	spring	standard	CR-S048/060VADC1SZ	1SVR405521R5200	CR-S048VDC1R	1SVR405501R4010
		gold plated	CR-S048/060VADC1SZ	1SVR405521R5200	CR-S048VDC1RG	1SVR405501R4020
$60 \mathrm{~V} \mathrm{AC/DC}$	screw	standard	CR-S048/060VADC1SS	1SVR405521R5100	CR-S060VDC1R	1SVR405501R5010
		gold plated	CR-S048/060VADC1SS	1SVR405521R5100	CR-S060VDC1RG	1SVR405501R5020
	spring	standard	CR-S048/060VADC1SZ	1SVR405521R5200	CR-S060VDC1R	1SVR405501R5010
		gold plated	CR-S048/060VADC1SZ	1SVR405521R5200	CR-S060VDC1RG	1SVR405501R5020
$110-125$ V AC/DC	screw	standard	CR-S110/125VADC1SS	1SVR405521R6100	CR-S060VDC1R	1SVR405501R5010
		gold plated	CR-S110/125VADC1SS	1SVR405521R6100	CR-S060VDC1RG	1SVR405501R5020
	spring	standard	CR-S110/125VADC1SZ	1SVR405521R6200	CR-S060VDC1R	1SVR405501R5010
		gold plated	CR-S110/125VADC1SZ	1SVR405521R6200	CR-S060VDC1RG	1SVR405501R5020
220-240 V AC/DC	screw	standard	CR-S220/240VADC1SS	1SVR405521R7100	CR-S060VDC1R	1SVR405501R5010
		gold plated	CR-S220/240VADC1SS	1SVR405521R7100	CR-S060VDC1RG	1SVR405501R5020
	spring	standard	CR-S220/240VADC1SZ	1SVR405521R7200	CR-S060VDC1R	1SVR405501R5010
		gold plated	CR-S220/240VADC1SZ	1SVR405521R7200	CR-S060VDC1RG	1SVR405501R5020

—
CR-S optocoupler range relay assemblies

Control voltage	Connection terminal	Output characteristics	Socket type	Socket order code	Opto type	Opto order code
24 V DC	screw	Transistor $100 \mathrm{~mA}-48 \mathrm{~V}$ DC	CR-S012/024VADC1SS	1SVR405521R3100	CR-S024VDC1TRA	1SVR405510R3050
	spring		CR-S012/024VADC1SZ	1SVR405521R3200	CR-S024VDC1TRA	1SVR405510R3050
	screw	$\begin{aligned} & \text { MOS-FET } \\ & 2 \mathrm{~A}-24 \mathrm{~V} \text { DC } \end{aligned}$	CR-S012/024VADC1SS	1SVR405521R3100	CR-S024VDC1MOS	1SVR405510R3060
	spring		CR-S012/024VADC1SZ	1SVR405521R3200	CR-S024VDC1MOS	1SVR405510R3060
	screw	Triac$2 \text { A - } 240 \text { V AC }$	CR-S012/024VADC1SS	1SVR405521R3100	CR-S024VDC1TRI	1SVR405510R3070
	spring		CR-S012/024VADC1SZ	1SVR405521R3200	CR-S024VDC1TRI	1SVR405510R3070

CR-S range complete versions Selection table - List of components

The complete versions of the CR-S range comprise of a pluggable interface relay, socket and marker.

CR-S complete versions

							ck				
			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \\ & \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{y}{u} \\ & \sim \end{aligned}$				1SVR405521R3200				$\begin{aligned} & 0 \\ & 0 \\ & N \\ & N \\ & \alpha \\ & N \\ & N \\ & N \\ & 0 \\ & 0 \\ & \alpha \\ & u \\ & n \end{aligned}$
Complete versions	$\stackrel{0}{2}$				CR-S060VDC1RG		CR-S012/024VADC1SZ				
Order code	Type										
1SVR405541R3110	CR-S024VADC1CRS	\square									
1SVR405541R3120	CR-S024VADC1CRGS		\square			-					
1SVR405541R3210	CR-S024VADC1CRZ	\square					\square				
1SVR405541R3220	CR-S024VADC1CRGZ		■				-				
1SVR405541R6110	CR-S110VADC1CRS			\square				\square			
1SVR405541R6120	CR-S110VADC1CRGS				\square			-			
1SVR405541R6210	CR-S110VADC1CRZ			\square					\square		
1SVR405541R6220	CR-S110VADC1CRGZ				\square				\square		
1SVR405541R7110	CR-S230VADC1CRS			\square						\square	
1SVR405541R7120	CR-S230VADC1CRGS				\square					\square	
1SVR405541R7210	CR-S230VADC1CRZ			\square							\square
1SVR405541R7220	CR-S230VADC1CRGZ				\square						\square

CR-P range

Selection table

$\overline{\mathrm{CR}} \mathrm{P}$ pluggable relays

CR－P range

Selection table
－
CR－P complete versions

	0 0 0 0 \vdots 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n n				1SVR405600R8010	OT00४009S0ty＾SI	1SVR405600R2010	OTIE 009GOtyへSI	โITEと009s0tyヘSI	OLOع४009GOty＾ST						OTOL®909GOty＾SI		TIOTと909GOtyヘST							عโOعy909S0ty＾St		
	$\stackrel{0}{\stackrel{0}{\lambda}}$			CR-P024DC1LC42V		CR－P110DC1SS42CV	CR－P024AC1SS62CV	CR－P120AC1SS92CV	CR-P230AC1SS92CV		CR-P230AC1LC92CV						CR-P024DC2GLC42V	ગટ9ગาפટวดャટ0d־ษว										
Input voltage																												
12 V DC		\square										－																
24 V DC			\square	\square	\square								\square															
48 V DC																												
110 V DC						\square														\square								
12 V AC																												
24 V AC							\square														\square							
48 V AC																												
110 V AC																												
120 V AC								\square														\square						
230 V AC									\square	\square	\square												\square	\square	\square	\square	\square	\square
Output rating																												
250 V 16 A		\square	E	\square	\square	－	\square	\square	\square	\square	■																	
250 V 8 A												\square																
Output contacts																												
c／o		1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Gold plated contacts																	\square	\square	\square							\square	\square	－
Socket type																												
Standard socket		\square	\square			\square	\square	\square	\square				\square							\square	\square	\square	\square					
Logical socket					\square					－	\square			－	\square	\square	\square	E	\square					\square	\square	\square	\square	\square
Additional features																												
LED		\square		\square																								
Free－wheeling diode		\square	\square	\square		\square						\square	\square	\square	\square	\square	\square			\square						\square		

CR-P range complete versions
 Selection table - List of components

The complete versions of the CR-P range comprise of a pluggable interface relay, socket, holder, marker and a function module.

CR-P complete versions

		Relay									Socket			Function module								Holder
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \end{aligned}$					O 0 0 1 1 0 0 0 0 0 0 1 n n				0 0 0 0 0 0 0 0 0 0 0 0 \vdots \vdots n n								0 0 0 2 2 0 0 0 0 0 0 \vdots 2 n n n				
Complete versions	$\stackrel{\otimes}{2}$	$\begin{aligned} & \tilde{U} \\ & 0 \\ & \underset{\sim}{0} \\ & \underset{O}{0} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$							$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{\sim} \\ & \sim \\ & \sim \\ & \underset{\sim}{c} \end{aligned}$		$\left\lvert\, \begin{aligned} & \tilde{\sim} \\ & \dot{\sim} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}\right.$	$\begin{aligned} & u \\ & \underline{a} \\ & \dot{\alpha} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & u \\ & \underset{1}{\dot{\alpha}} \\ & \underset{\sim}{c} \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\dot{\alpha}} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}\right.$	$\begin{aligned} & \underset{\sim}{\underset{~}{\prime}} \\ & \underset{\sim}{\mathcal{u}} \\ & \underset{\sim}{\alpha} \\ & \dot{\alpha} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{\mathcal{T}} \\ & \Sigma \\ & \underset{\sim}{\dot{\alpha}} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{U} \\ & \underset{\sim}{6} \\ & \Sigma \\ & \underset{\sim}{\alpha} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \tilde{\sim} \\ & \underset{\sim}{\Sigma} \\ & \underset{\sim}{\dot{u}} \\ & \dot{u} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \sum_{\grave{\alpha}}^{\alpha} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{n} \\ & \Sigma \\ & \underset{\sim}{\dot{u}} \\ & \dot{\alpha} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{n} \\ & \sum_{2}^{\prime} \\ & \dot{\sim} \\ & \dot{u} \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{I} \\ \dot{\Lambda} \\ \stackrel{\sim}{U} \end{array}$
Order code	Type																					
1SVR405601R4010	CR-P012DC2SS42V	\square									\square				■							\square
1SVR405601R1010	CR-P024DC2SS42V		\square								\square				■							\square
1SVR405601R1013	CR-P024DC2LS42		\square									\square		\square								\square
1SVR405601R1011	CR-P024DC2LS42V		\square									■			■							\square
1SVR405601R1012	CR-P024DC2LC42		■										\square	\square								\square
1SVR405606R1010	CR-P024DC2GLC42V			\square									\square		\square							\square
1SVR405606R1013	CR-P024DC2GLC62C			\square									\square				\square					\square
1SVR405606R1011	CR-P024DC2GLC62CV			■									\square					\square				\square
1SVR405601R8010	CR-P110DC2SS42CV				■						\square					\square						\square
1SVR405601R0010	CR-P024AC2SS62CV					\square	-				\square							\square				\square
1SVR405601R2010	CR-P120AC2SS92CV							\square			\square										\square	\square
1SVR405601R3110	CR-P230AC2SS92CV								\square		\square										\square	\square
1SVR405601R3011	CR-P230AC2LS92CV								\square			-									\square	\square
1SVR405601R3012	CR-P230AC2LC92								\square				\square						\square			\square
1SVR405606R3013	CR-P230AC2GLC92									\square			\square						■			\square
1SVR405606R3012	CR-P230AC2GLC92C									\square			\square							■		\square
1SVR405606R3010	CR-P230AC2GLC92CV									■			\square								\square	\square

CR－M range
 Selection table

－

CR－M pluggable relays without LED

	0 0 0 0 \vdots 0 0		0 0 0 n 7 7 0 0 0 2 2 n n					0006をTT9GOヤをへSt				000टぬIT9G0ヤ४へSI				0009y己T9G0ヤปへSI				0006を己T9G0ヤをへSI			1SVR405612R5200		1SVR405612R2000		1SVR405613R4000	1SVR405613R1000		1SVR405613R4200		1SVR405613R8200				1SVR405613R7000	000ટษとโ9GOヤปへSI	
	$\stackrel{0}{2}$			$\begin{aligned} & \underset{U}{U} \\ & 0 \\ & \infty \\ & \underset{\sim}{0} \\ & \sum_{i}^{\alpha} \\ & \dot{U} \end{aligned}$										$\begin{aligned} & \underset{y}{U} \\ & \underset{\sim}{N} \\ & \underset{U}{O} \\ & \sum_{1}^{\prime} \\ & \dot{\sim} \end{aligned}$		$\begin{aligned} & \text { M } \\ & \text { O} \\ & \infty \\ & \vdots \\ & \sum_{i}^{\prime} \\ & \underset{U}{c} \end{aligned}$	O 0 0 0 \sum_{1} $\substack{c \\ ~ \\ \hline}$	$\begin{aligned} & \text { M } \\ & 0 \\ & 0 \\ & 0 \\ & \underset{1}{1} \\ & \sum_{1}^{\alpha} \\ & \dot{U} \end{aligned}$					CR－M060AC3			$\begin{aligned} & \underset{U}{U} \\ & \underset{y}{u} \\ & \underset{\sim}{u} \\ & \underset{\sim}{u} \\ & \dot{\sim} \\ & \hline \end{aligned}$												
Input voltage																																						
12 V DC		\square												\square													■											
24 V DC			\square												\square													－										
48 V DC				\square												\square													\square									
60 V DC					\square												\square													\square								
110 V DC						\square												\square													\square							
125 V DC							\square												\square													\square						
220 V DC								\square												\square													\square					
24 V AC									\square												\square													\square				
48 V AC										\square												\square													\square			
60 V AC																							\square															
110 V AC											\square													\square												\square		
120 V AC												\square													\square												\square	
230 V AC													\square													\square												\square
Output rating																																						
250 V 6 A																											\square											
250 V 10 A														\square																								
250 V 12 A		\square	－	\square	\square																																	
Output contacts																																						
c／o		2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
Gold plated contacts																																						
Additional features																																						
LED																																						
Free－wheeling diode																																						

CR-M range
 Selection table

-

CR-M pluggable relays with LED

																	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$		O
$\stackrel{\circ}{2}$				$\begin{aligned} & \text { Q } \\ & \underset{\sim}{U} \\ & \underset{\sim}{\tilde{O}} \\ & \sum_{\dot{\sim}} \end{aligned}$			$\begin{aligned} & \vec{\sim} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sum_{\dot{c}}^{\dot{\sim}} \\ & \dot{U} \end{aligned}$			$\begin{aligned} & \vec{\sim} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \sum_{\dot{\sim}} \end{aligned}$		N	$\begin{aligned} & \text { O} \\ & \text { Ũ } \\ & \text { O} \\ & \underset{N}{N} \end{aligned}$				~		N

| Output contacts | | | | | | | | | | | | | | | | | | | |
| :--- |
| c/o | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Gold plated contacts | | | | | | | | | | | | | | | | | | | |

Additional features

LED	■		■	■	■		-	\square	■	\square	-	I	\square	\square	■	■	■	■	■	■	\square	\square
Free-wheeling diode			\square		-			\square			-	-		\square		\square						

CR-M range

Selection table
-
CR-M pluggable relays with LED

CR-M range

Selection table
-
CR-M pluggable relays with LED

															\circ 0 \vdots \vdots \vdots n					O
$\stackrel{0}{\circ}$												$\begin{aligned} & \vec{J} \\ & \underset{U}{0} \\ & \underset{\sim}{N} \\ & \sum_{\dot{\prime}}^{\dot{\tilde{u}}} \end{aligned}$				J d d d ¢ d d				

Input voltage																			
12 V DC	\square	■																	
24 V DC			\square	\square															
48 V DC					\square	\square													
60 VDC							\square												
110 V DC								\square	\square										
125 V DC										■	■								
220 V DC												■	■						
12 V AC														\square					
24 VAC															\square				
48 V AC																\square			
60 V AC																			
110 V AC																	■		
120 V AC																		\square	
230 V AC																			\square
Output rating																			
250 V 6 A	\square	■	\square	■	-	\square	■	\square	■	■	■	■	■	■	\square	\square	\square	\square	■
250 V 10 A																			
250 V 12 A																			
Output contacts																			
c/o	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Gold plated contacts																			
Additional features																			
LED	\square	■	■	■	-	■	■	■	■	■	■	■	■	■	■	■	■	■	■
Free-wheeling diode		\square		\square		\square			\square		\square		\square						

CR-M range

Selection table
-
CR-M pluggable relays with Gold Plated Contacts

		0 n n	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \alpha \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \\ & u \end{aligned}$	0 \vdots \vdots \vdots 									0 n n				0 0 0 0 0 0 0 0 0 0 0 0 u n		O + 0 0 1 0 0 0
$\stackrel{0}{2}$																			\sum°

Input voltage

Output rating

250 V 6 A	\square	\square	■	\square	■	\square	■	-	-	■	■	-	1	\square	■		-	\square	■	-		-	■
250 V 10 A																							
250 V 12 A																							
Output contacts																							
c/o	4	4	4	4	4	4	4		4	4	4	4	4	4	4		4	4	4	4		4	4
Gold plated contacts	\square	■	■	\square	■	\square	\square		-	■	■	-	1	\square	-		1	\square	-	-		\square	\square
Additional features																							
LED							\square		-	\square	■		1	\square	-		\square	\square	■	-		\square	\square
Free-wheeling diode																						\square	\square

CR-M range complete versions

Selection table

CR-M range complete versions

										0 7 7 0 0 0 0 0 0 0 0 2 n n	0 \vdots \vdots \vdots				$\begin{aligned} & n \\ & \underset{1}{n} \\ & \sim \\ & \sim \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & n \\ & n \end{aligned}$		
	$\stackrel{0}{2}$		$\begin{aligned} & \underset{~}{u} \\ & \underset{y}{u} \\ & \tilde{y} \\ & \underset{y}{c} \\ & \underset{\sim}{\sim} \\ & \sum_{c}^{\alpha} \end{aligned}$											$\begin{aligned} & \tilde{y} \\ & \underset{y}{y} \\ & \underset{y}{u} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{c} \end{aligned}$			
Input voltage																	
12 V DC		\square															
24 VDC			\square	■		\square	\square	\square	\square	■							
48 V DC																	
60 V DC																	
110 V DC																	
125 V DC																	
220 V DC																	
24 V AC											■						
48 V AC																	
60 V AC																	
110 V AC																	
120 V AC																	
230 V AC												\square	\square	\square	\square	\square	\square
Output rating																	
250 V 6 A		\square	\square	\square		-	\square	\square	\square	■	■	\square	■	\square	■	\square	\square
250 V 10 A																	
250 V 12 A																	
Output contacts																	
c/o		4	4	4		4	4	4	4	4	4	4	4	4	4	4	4
Gold plated contacts		\square					\square	\square	\square	\square					\square	\square	\square
Socket type																	
Standard socket		■	■				■			■		■			■		\square
Logical socket				\square		\square		\square	\square		\square		\square	\square		\square	
Additional features																	
LED		\square	\square	■		-	\square	\square	\square	\square	■	\square	■	\square	■	\square	\square
Free-wheeling diode		\square	\square	\square		\square	\square		\square	\square					\square		\square

CR-M range complete versions Selection table - List of components

The complete versions of the CR-M range comprise of a pluggable interface relay, socket, holder, marker and where applicable a function module.

CR-M complete versions

		Relay									Socket			Function module							Holder
	\circ 0 0 0 0 0			0 0 0 2 0 0 0 0 0 0 0 0 n n 1			0 \vdots \vdots n												0 0 0 		000TY6s9s0ty
Complete versions	$\stackrel{0}{2}$		$\begin{aligned} & \underset{U}{U} \\ & \underset{\sim}{\underset{~}{\sim}} \\ & \underset{\sim}{c} \\ & \underset{\sim}{\alpha} \end{aligned}$								$\begin{aligned} & \underset{\sim}{u} \\ & \sum_{\substack{d}}^{\sim} \\ & \underset{\sim}{c} \end{aligned}$		$\begin{aligned} & \underset{\sim}{u} \\ & \underset{y}{j} \\ & \underset{\sim}{\alpha} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \sum_{i}^{\prime} \\ & \dot{\alpha} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathcal{G}} \\ & \underset{\substack{\alpha}}{\dot{\sim}} \end{aligned}$		$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{\sim} \\ & \sum_{\grave{\prime}}^{\dot{u}} \\ & \dot{\sim} \end{aligned}$		$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{\lambda} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{N} \\ & \sum \\ & \underset{\alpha}{\alpha} \\ & \dot{u} \end{aligned}$	$\begin{array}{\|l\|l} \sum_{\substack{\alpha \\ ~}}^{\substack{\alpha}} \end{array}$
Order code	Type																				
1SVR405618R4410	CR-M012DC4LDGSS	\square									■										\square
1SVR405613R1010	CR-M024DC4SS42V		\square								\square					\square					\square
1SVR405613R1011	CR-M024DC4LS42V		\square									\square				\square					\square
1SVR405613R1012	CR-M024DC4LC42		\square										\square		\square						\square
1SVR405618R1011	CR-M024DC4GSS42V			\square							\square					\square					\square
1SVR405618R1010	CR-M024DC4GLC62CV			\square									\square					■			\square
1SVR405618R1110	CR-M024DC4LGLC22				■								\square	\square							\square
1SVR405618R1410	CR-M024DC4LDGSS					\square					■										\square
1SVR405613R0010	CR-M024AC4LS62CV						\square					\square						■			\square
1SVR405613R3110	CR-M230AC4SS92CV							\square			■									\square	\square
1SVR405613R3011	CR-M230AC4LS92CV							\square				\square								\square	\square
1SVR405613R3012	CR-M230AC4LC92							\square					\square						\square		\square
1SVR405618R3112	CR-M230AC4GSS92CV								\square		\square									\square	\square
1SVR405618R3110	CR-M230AC4LGLC									\square			\square								\square
1SVR405618R3111	CR-M230AC4LGSS									\square	\square										\square

CR-P/M function modules
 Selection table

CR-P/M function modules

CR－U range

Selection table

－
CR－U pluggable relays without LED

	$\begin{aligned} & \text { 0 } \\ & 0 \\ & 0 \\ & \text { ㄴ } \\ & \text { oi } \\ & 0 \end{aligned}$													0009をટट9G0tyヘSI	0008ษટટ9G0ヤもへST		0006をટટ9G0ヤもへST						
	$\stackrel{0}{\wedge}$											M N $\underset{\sim}{3}$ $\underset{u}{c}$ cे							M \vdots 0 \vdots \vdots \vdots \vdots \vdots \vdots			n u \vdots \vdots $\underset{~}{4}$ \vdots \vdots \vdots u	
Input voltage																							
12 V DC		\square										\square											
24 V DC			\square										\square										
48 V DC				\square										\square									
110 V DC					\square										\square								
125 V DC																■							
220 V DC						\square											\square						
12 V AC																							
24 V AC							\square											\square					
48 V AC								\square											\square				
60 V AC																				\square			
110 V AC									\square												\square		
120 V AC										\square												\square	
230 V AC											\square												\square
Output rating																							
250 V 10 A		\square	－	－	－	\square	\square																
Output contacts																							
c／o		2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3
Gold plated contacts																							

CR-U range
 Selection table

-

CR-U pluggable relays with LED

	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{0}{4} \\ & \frac{0}{0} \\ & \dot{0} 5 \end{aligned}$			\circ																																
	$\begin{gathered} \circ \\ \stackrel{\circ}{\lambda} \\ \hline \end{gathered}$	$\begin{array}{\|c} \vec{\sim} \\ 0 \\ 0 \\ \tilde{0} \\ \underset{\sim}{c} \\ \dot{\sim} \end{array}$											$\begin{array}{\|c} \underset{\sim}{\tilde{u}} \\ \underset{\sim}{u} \\ \underset{\sim}{c} \\ \dot{\sim} \\ \hline \end{array}$	$\begin{aligned} & \overrightarrow{\tilde{U}} \\ & \underset{\sim}{q} \\ & \tilde{\sim} \\ & \underset{\sim}{u} \\ & \dot{u} \end{aligned}$				$\begin{aligned} & \overrightarrow{\tilde{U}} \\ & \stackrel{\rightharpoonup}{0} \\ & \tilde{\tilde{x}} \\ & \dot{\sim} \end{aligned}$			$\left\{\begin{array}{l} 0 \\ \underset{0}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ \underset{\sim}{\dot{c}} \\ \dot{\sim} \end{array}\right.$															¢
Input voltage																																				
12 VDC		-	-																		-															
24 VDC					-	-																-	1	\square												
48 VDC							\square	-																	-	-										
110 VDC										- -	\square																■									
125 VDC																												-								
220 VDC												\square																	-							
12 VAC													\square																	\square						
24 VAC														-																		-				
48 VAC															\square																		-			
60 VAC																																				
110 VAC																	-																	-		
120 VAC																		\square																	\square	
230 VAC																			\square																	\square
Output rating																																				
250 V 10 A		\square	\square	\square	-	\square	\square	\square	\square	-	-	\square	\square	\square	\square	-	\square	\square	\square	\square	■	-	-	\square	\square	\square	\square	\square	-	\square	-	\square	■	\square	\square	\square
Output contacts																																				
c/o		2	2	2	22	2	2	2		22	2	2	2	2	2	2	2	2	2	3	3		3	33	3	3	3	3	3	3	3	3	3	3	3	3
Gold plated contacts																																				
Additional features																																				
LED		-	-	-	-	-	\square	-	\square	-	\square	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\square	\square	-	-	-	-	-	-	-	■	\square
Free-wheeling diode			\square	-		\square		\square			\square										-			\square		\square		\square								

CR－U function modules
 Selection table

CR－U function modules

									0 0 0 0 0 0 0 0 1 0 0 \vdots \vdots 4 n		1SVR405663R1000								0 0 0 0 \sim 1 0 0 6 0 0 1 1 3 n n								
	$\stackrel{0}{0} \underset{\imath}{2}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{1} \\ & \underset{\sim}{u} \end{aligned}$	$\begin{aligned} & \underset{寸}{-1} \\ & \underset{\sim}{1} \\ & \underset{\sim}{u} \end{aligned}$	$\begin{aligned} & \underset{子}{\lambda} \\ & \underset{寸}{\prime} \\ & \underset{\sim}{\dot{\sim}} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\tau} \\ & \underset{\sim}{\dot{u}} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{m} \\ & \underset{\sim}{\prime} \\ & \underset{\sim}{c} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \cup \\ & \underset{\sim}{\top} \\ & \underset{\sim}{1} \\ & \underset{\sim}{\tau} \end{aligned}$	$\begin{aligned} & \underset{~}{u} \\ & \underset{-}{\prime} \\ & \underset{\sim}{u} \\ & \underset{\sim}{u} \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{n} \\ & \vec{~} \\ & \dot{\sim} \\ & \underset{U}{\prime} \end{aligned}$	$\begin{aligned} & \cup \\ & \text { un } \\ & \vdots \\ & \vdots \\ & \dot{u} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{\dot{u}} \\ & \stackrel{\alpha}{u} \end{aligned}$	$\begin{aligned} & > \\ & \vec{j} \\ & \underset{\sim}{c} \\ & \dot{\sim} \\ & u \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{2} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{\varphi} \\ & \underset{\sim}{c} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \stackrel{-}{6} \\ & \underset{\sim}{1} \\ & \stackrel{\alpha}{u} \end{aligned}$	$\begin{aligned} & \vec{~} \\ & \text { न} \\ & \overrightarrow{1} \\ & \dot{\alpha} \\ & u \end{aligned}$	$\begin{aligned} & \cup \\ & \underset{\sim}{1} \\ & \underset{\sim}{1} \\ & \dot{u} \end{aligned}$	$\begin{aligned} & \geq \\ & U \\ & 0 \\ & \vdots \\ & \underset{\sim}{c} \\ & \dot{u} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \underset{\sim}{1} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & > \\ & \stackrel{\rightharpoonup}{2} \\ & \vdots \\ & \underset{\sim}{u} \\ & \dot{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & u \\ & \underset{\sim}{\sigma} \\ & \vec{~} \\ & \dot{\alpha} \\ & \underset{u}{c} \end{aligned}$	$\begin{aligned} & \underset{u}{u} \\ & \underset{\sim}{n} \\ & \underset{\sim}{1} \\ & \dot{c} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\prime} \\ & \underset{\sim}{1} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\top} \\ & \underset{\sim}{N} \\ & \underset{\sim}{1} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & -1 \\ & \infty \\ & \underset{\sim}{\dot{u}} \\ & \dot{\alpha} \end{aligned}$	$\begin{aligned} & \vdash \\ & \supset \\ & \dot{\alpha} \\ & \underset{u}{u} \end{aligned}$
Related control supply voltage																											
6－220 V DC		\square																									
6－24 V DC			\square	■					\square			\square	\square					\square	\square								
24－60 V DC					\square	\square				\square				\square	\square					\square	\square						
110 V DC							\square	\square																			
110－230 V DC											\square					\square	\square					\square	\square				
6－24 V AC									\square			\square	\square					\square	\square								
24－60 V AC										\square				\square	\square					\square	\square						
110－230 V AC											\square					\square	\square					\square	\square				
24 V AC																											
115 V AC																											
230 V AC																											
24－240 V AC／DC																											
Function																											
Diode－reverse polarity protection／free wheeling diode		\square																									
Diode and LED－Reverse polarity protection／free－wheeling diode and LED to indicate energized coil			\square					\square																			
RC element－Spark quenching																											
Diode and LED－LED to indicate energized coil																											
Varistor and LED－Overvoltage protection and LED to indicate energized coil																											
Varistor－Overvoltage protection																								\square	\square	\square	
LED red			\square		\square		\square					\square															
LED green				\square		\square		\square					\square				\square										

Boxed interface relays $\mathbf{R 6 0 0}$ range Selection table

| | \circ | 0 | 0 |
| :--- |

Boxed interface relays $\mathbf{R 6 0 0}$ range Selection table

ABB STOTZ-KONTAKT GmbH
Eppelheimer Strasse 82
69123 Heidelberg
Germany

You can find the address of your local sales organization on the ABB homepage

abb.com/lowvoltage

[^0]: （1）The external conductor voltage towards the neutral conductor is measured．

[^1]: 1）The relay detects by means of a phase unbalance the interruption of the neutral conductor．The external conductor voltage towards the neutral conductor is measured too．

[^2]: pas = passive, act = active

