<table>
<thead>
<tr>
<th>MEDIAN PARTICLE SIZE</th>
<th>MICRONS</th>
<th>RUN No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD DEVIATION</td>
<td></td>
<td>DATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH MICRON</th>
<th>325</th>
<th>230</th>
<th>140</th>
<th>100</th>
<th>80</th>
<th>60</th>
<th>35</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMULATIVE UNDERSIZE %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUMULATIVE OVERSIZE %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Atomising Systems Limited
371 Coleford Road, Sheffield
S9 5NF England
Tel: +44 (0)114 2626 200
Fax: +44 (0)114 2626 201
E-mail: info@atomising.co.uk
www.atomising.co.uk

Specialists in: Metal Powder Production Plants • Melt Atomisation • Gas Atomisers • Water Atomisers
Using the log-normal plot

Convert all data into cumulative % undersize form, e.g. 16% sub 45μm, 31% sub 63μm, 65% sub 125μm, 90% sub 250μm. Then plot it as shown. Draw the best straight line through the data. Read off the median (D50%) size and D84% and calculate standard deviation as follows:

\[\sigma = \frac{D84\%}{D50\%} = \frac{D50\%}{D16\%} \]

Inspect the line and the data points for problems. If the points are all very close to a straight line, then the size distribution is completely described by the median and standard deviation. Examples of deviations are shown above and discussed in more detail in Atomising News of Winter 2001/2.

1. **Loss of fines**
 May be difficult to detect using sieves, but the data from a sub-sieve machine (laser etc) may show the problem. It takes the form of a strong deviation below linear at the fine end.

2. **Loss of coarse**
 Here the coarse end of the graph will kick up above linear.

3. **Holed (3a) or blocked (3b) test sieves**
 These show up very clearly as sharp steps in the line.

4. **Fluctuations in atomising conditions**
 If excessive coarse particles are evident, as by the line deviating below the straight line at the coarse end (4), then this indicates inadequate atomisation. A rise in standard deviation may also result.

5. **Agglomeration effects**
 If fine particles agglomerate to make coarser ones, the shape of the distribution will change.

6. **Sampling errors**
 Depending on severity, these can show up more or less clearly. Segregation can result in over- or under-reporting of fines or coarse (see 1, 2, 3b, 4).