WASTE WATER PIPE NOISE TESTS

BCA ACOUSTIC COMPARISON TEST OF 5 KG NUWRAP PIPE LAGGING

> REPORT NO. 13093-1 VERSION B

> > SEPTEMBER 2013

PREPARED FOR

THERMOTEC AUSTRALIA PTY LTD 168 CARRINGTON STREET REVESBY NSW 2212

DOCUMENT CONTROL

Version	Status	Date	Prepared By	Reviewed By
В	Final	27/09/13	Brian Clarke	John Wassermann

Note

All materials specified by Wilkinson Murray Pty Limited have been selected solely on the basis of acoustic performance. Any other properties of these materials, such as fire rating, chemical properties etc. should be checked with the suppliers or other specialised bodies for fitness for a given purpose. The information contained in this document produced by Wilkinson Murray is solely for the use of the client identified on the front page of this report. Our client becomes the owner of this document upon full payment of our **Tax Invoice** for its provision. This document must not be used for any purposes other than those of the document's owner. Wilkinson Murray undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.

Quality Assurance

We are committed to and have implemented AS/NZS ISO 9001:2008 "Quality Management Systems – Requirements". This management system has been externally certified and Licence No. QEC 13457 has been issued.

AAAC

This firm is a member firm of the Association of Australian Acoustical Consultants and the work here reported has been carried out in accordance with the terms of that membership.

TABLE OF CONTENTS

			Page
GLO	SSARY	OF ACOUSTIC TERMS	
1	INTRO	DDUCTION	1
2	PERFO	DRMANCE REQUIREMENTS	2
3	TEST (CONFIGURATION METHODOLOGY AND CONSTRUCTION	4
	3.1	Test Construction	4
	3.2	Testing Methodology	6
4	TEST I	RESULTS	7
5	DISCL	ISSION AND CONCLUSION	8

GLOSSARY OF ACOUSTIC TERMS

Most environments are affected by environmental noise which continuously varies, largely as a result of road traffic. To describe the overall noise environment, a number of noise descriptors have been developed and these involve statistical and other analysis of the varying noise over sampling periods, typically taken as 15 minutes.

Maximum Noise Level (L_{Amax}) – The maximum noise level over a sample period is the maximum level, measured on fast response, during the sample period.

 L_{A1} – The L_{A1} level is the noise level which is exceeded for 1% of the sample period. During the sample period, the noise level is below the L_{A1} level for 99% of the time.

 L_{A10} – The L_{A10} level is the noise level which is exceeded for 10% of the sample period. During the sample period, the noise level is below the L_{A10} level for 90% of the time. The L_{A10} is a common noise descriptor for environmental noise and road traffic noise.

 L_{A90} – The L_{A90} level is the noise level which is exceeded for 90% of the sample period. During the sample period, the noise level is below the L_{A90} level for 10% of the time. This measure is commonly referred to as the background noise level.

 L_{Aeq} — The equivalent continuous sound level (L_{Aeq}) is the energy average of the varying noise over the sample period and is equivalent to the level of a constant noise which contains the same energy as the varying noise environment. This measure is also a common measure of environmental noise and road traffic noise.

SEL – The A Weighed Sound Exposure Level which is the noise level that would be generated if all the energy from a discreet noise event (e.g. a toilet flush) was compressed into 1 second.

1 INTRODUCTION

Wilkinson Murray Pty Ltd was engaged by Thermotec Australia Pty Ltd to conduct comparative noise testing of waste water pipe work noise to determine compliance of Nuwrap pipe lagging with the requirements of the section F5 of the Building Code of Australia.

Noise levels in a complying construction scenario where measured in a purpose built test room at St Marys. These tests served as reference noise levels for further comparison with alternative noise control treatment of pipework. Following the reference testing the waste pipe was lagged with Thermotec's Nuwrap pipe lagging product and noise levels were remeasured.

A comparison of the results of the tests was conducted to determine compliance with the requirements of the deemed to satisfy provisions of the BCA with respect to waste water noise in residential dwellings.

The assessment of an alternative solution has been determined in accordance with section A0.10 "Relevant Performance Requirements".

Maximum and SEL noise levels associated with toilet flushes were measured in the test room with a wall that achieves the requirements of section F5 BCA.

The following sections detail the details of test methodology, results and conclusions.

2 PERFORMANCE REQUIREMENTS

The current Building Code Australia in section F5.6 – Sound Insulation Rating of Services" states:

- (a) If a duct, soil waste or water supply pipe, including a duct or pipe that is located in a or floor cavity, serves or passes through more than one sole-occupancy unit, the pipe must be separated from the rooms of any sole-occupancy by a construction with an Rw+Ctr(air borne) not less than
 - (i) 40 if the adjacent room is a habitable room (other than a kitchen); or
 - (ii) 25 if the adjacent room is a kitchen or a non habitable room
- (b) If a storm water pipe passes through a sole-occupancy unit it must be separated in accordance with (a)(i) and (ii)".

In the case of item (a)(i) a drywall construction that has been tested which achieves an acoustic Rw+Ctr rating of not less than 40. The construction that was selected consisted of the following wall construction:

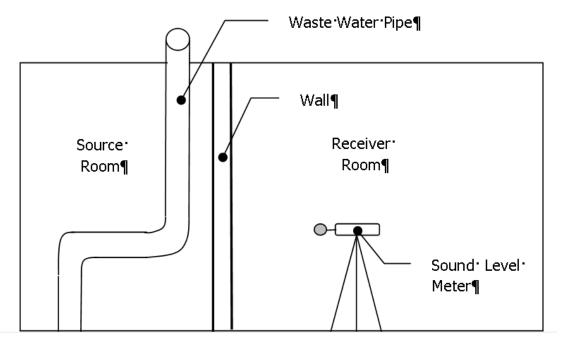
- 2 x 13 mm Gyprock Fyrcheck plasterboard
- 64 mm steel studs at 600 mm maximum centres.
- 50 mm glasswool partition batts (10.8 kg/m³)
- 2 x 13 mm Gyprock Fyrcheck plasterboard.

The above wall has been tested to achieve an acoustic rating of Rw +Ctr of 40 (Reference test HAS 067 CSR Gyprock Fire and Acoustic Design Guide). The reported transmission loss is presented in Table 2.1.

Table 2.1 Wall Transmission Loss Test Results - HAS 067 CSR Gyprock Fire and Acoustic Design Guide

Third Octave Frequency Hertz	Transmission Loss - dB
100	22
125	30
160	31
200	37
250	42
315	44
400	47
500	49
630	52
800	53
1000	54
1250	52
1600	49
2000	50
2500	53
3150	57
4000	61
5000	63

3 TEST CONFIGURATION METHODOLOGY AND CONSTRUCTION


Test configurations equipment and methodology are detailed in the following sections.

3.1 Test Construction

A test room with toilet and pipework was constructed in a room at a purpose built facility at Plasser Crescent, St Marys. External walls to the room consisted of concrete blocks and the pipework has been isolated from the ceiling construction to avoid any flanking paths to the test room.

Figure 3.1 shows a schematic of the test room configuration.

Figure 3.1 Schematic Test Configuration

Two test setups were used in the comparative testing as follows:

Test 1 Setup

The initial test set up consisted of a bare waste water pipe (Figure 3.2) installed behind the Rw +Ctr 40 plasterboard wall (Figure 3.3).

Test 2 Setup

The Rw+Ctr 40 wall was removed and the bare pipe was lagged with 5 kg/m^2 Nuwrap and a 10 mm plasterboard wall installed on the studs. This product has a 25 mm convoluted foam layer.

Figure 3.3 Rw+Ctr 40 Wall

3.2 Testing Methodology

Testing was conducted utilising a Bruel and Kjaer sound level meter type 2260 located 1 metre above the floor in the centre of the receiving room on a tripod.

The toilet cistern (see Figure 3.4) was filled and flushed 10 times. The L_{Amax} along with the A weighted Sound Exposure Level (SEL) was measured for each flush. The results were then complied and average noise levels were calculated.

Prior to and following completion of tests the calibration of the meter was checked using a Bruel and Kjaer calibrator type 4231 whereby no significant drift was observed.

4 TEST RESULTS

The results of testing in the receiver room with ten water flushes, bare pipe and an Rw+Ctr 40 wall are detailed in Table 4.1.

Table 4.1 Measured Noise Levels of Waste Water Noise in Receiver Room – Bare Waste Water Pipe and Rw+Ctr 40 Wall - dBA

Test Number	L _{Amax}	SEL
1	39.8	45.7
2	37	45.5
3	36.9	44.5
4	37.3	44.5
5	38.3	44.5
6	38.9	44.7
7	37.3	44.4
8	36.2	43.7
9	38.1	43.9
10	36.9	44
AVERAGE NOISE LEVEL	37.7	44.5
MEAN NOISE LEVEL	37.3	44.5

The results of testing in the receiver room with ten water flushes, pipe lagged with Nuwrap and a 10 mm plasterboard wall are detailed in Table 4.2

Table 4.2 Measured Noise Levels of Waste Water Noise in Receiver Room – 5 kg/m² Nuwrap with 25 mm convoluted foam Pipe Lagging and 10 mm plasterboard wall - dBA

Test	L _{Amax}	SEL
1	35.7	42.5
2	35.6	42.5
3	34	43
4	36.6	43.3
5	40.3	43.3
6	36.1	42.9
7	36.3	43
8	34.9	42.5
9	35.3	42.4
10	35.6	42.5
AVERAGE NOISE LEVEL	36.0	42.8
MEAN NOISE LEVEL	35.7	42.8

5 DISCUSSION AND CONCLUSION

A review of the results presented in Section 4 indicates that measured noise levels of waste water noise in the receiver room are lower when the Rw+Ctr 40 construction is replaced with 10 mm plasterboard wall and the pipe is lagged with Thermotec's 5 kg/m² Nuwrap pipewrap.

Table 5.1 summarises the results of measurements.

Table 5.1 Comparison of Measured Noise Levels - dBA

Construction	Average Noise Level		
Construction	L _{Amax}	SEL	
Bare Pipe with a Rw+Ctr 40 wall	37.7	44.5	
Pipe Lagged with 5 kg/m ² Nuwrap with 25 mm convoluted foam			
and a wall of 10 mm Plasterboard	36.0	42.8	

Therefore, based on the comparative noise testing, the treatment of wastewater pipework with Nuwrap pipe lagging in combination at 10 mm plasterboard ceiling will comply with the provisions of section F5.6 of the Building Code of Australia.

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK