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8-hydroxy-2′-deoxyguanosine
(8-OHdG): A Critical Biomarker
of Oxidative Stress
and Carcinogenesis

Athanasios Valavanidis, Thomais Vlachogianni,
and Constantinos Fiotakis
Department of Chemistry, University of Athens, University Campus Zografou, Athens,
Greece

There is extensive experimental evidence that oxidative damage permanently occurs
to lipids of cellular membranes, proteins, and DNA. In nuclear and mitochondrial
DNA, 8-hydroxy-2′-deoxyguanosine (8-OHdG) or 8-oxo-7,8-dihydro-2′-deoxyguanosine
(8-oxodG) is one of the predominant forms of free radical-induced oxidative lesions,
and has therefore been widely used as a biomarker for oxidative stress and carcino-
genesis. Studies showed that urinary 8-OHdG is a good biomarker for risk assess-
ment of various cancers and degenerative diseases. The most widely used method of
quantitative analysis is high-performance liquid chromatography (HPLC) with electro-
chemical detection (EC), gas chromatography-mass spectrometry (GC-MS), and HPLC
tandem mass spectrometry. In order to resolve the methodological problems encoun-
tered in measuring quantitatively 8-OHdG, the European Standards Committee for
Oxidative DNA Damage was set up in 1997 to resolve the artifactual oxidation prob-
lems during the procedures of isolation and purification of oxidative DNA products.
The biomarker 8-OHdG or 8-oxodG has been a pivotal marker for measuring the ef-
fect of endogenous oxidative damage to DNA and as a factor of initiation and pro-
motion of carcinogenesis. The biomarker has been used to estimate the DNA damage
in humans after exposure to cancer-causing agents, such as tobacco smoke, asbestos
fibers, heavy metals, and polycyclic aromatic hydrocarbons. In recent years, 8-OHdG
has been used widely in many studies not only as a biomarker for the measurement of
endogenous oxidative DNA damage but also as a risk factor for many diseases including
cancer.
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Biomarker of Oxidative Stress and Carcinogenesis 121

INTRODUCTION

Reactive oxygen species (ROS) are formed continuously in living cells of aer-
obic organisms as part of the physiological processes, metabolic, and other
biochemical reactions. These endogenously produced ROS and oxygen-free
radicals have important physiological functions, but because of their reactive
nature can cause oxidative damage to lipids of cellular membranes, proteins,
and DNA (1). Also, exogenous factors, such as UV radiation, tobacco smoke,
asbestos, and carcinogenic substances, can produce ROS under various condi-
tions (2)

Under normal physiological conditions in all aerobic organisms, there is
a balance maintained between endogenous oxidants and numerous enzymatic
and non-enzymatic antioxidant defenses (3,4). When an imbalance occurs, oxi-
dants produce extensive oxidative damage to DNA, which, in turn, contributes
to aging, malignant tumors, and other degenerative diseases (5–7).

In all living cells, damaged DNA is repaired enzymatically so that they re-
gain their normal function, whereas misrepaired DNA can result in mutations
(base substitution, deletions, and strand fragmentation) leading to carcinogen-
esis (8, 9). Although a broad range of DNA products are produced during ox-
idative damage to DNA (bases and sugar modifications, covalent crosslinks,
single- and double-stranded breaks), most interest focused on nucleobase mod-
ifications and especially on the abundant lesion of 8-oxo-2′-deoxyguanosine be-
cause it is formed in vivo and can be measured quantitatively in cells following
hydrolysis of the DNA to component bases (10).

Reactive Oxygen Species and Oxidative DNA Damage
The most important oxygen-free radical causing damage to basic

biomolecules (proteins, membrane lipids, and DNA) is the hydroxyl radical
(HO•). The hydroxyl radical can be produced by various mechanisms, espe-
cially by the Fenton reaction of hydrogen peroxide (which diffuses into the nu-
cleus) and metals and other endogenous and exogenous ROS. The HO• attacks
DNA strands when it is produced adjacent to cellular and mitochondrial DNA
causing the addition of DNA bases new radicals, which lead to the generation
of a variety of oxidation products (11).

The interaction of HO• with the nucleobases of the DNA strand, such as
guanine, leads to the formation of C8-hydroxyguanine (8-OHGua) or its nucle-
oside form deoxyguanosine (8-hydroxy-2′-deoxyguanosine). Initially, the reac-
tion of the HO• addition leads to the generation of radical adducts, then by one
electron abstraction, the 8-hydroxy-2′-deoxyguanosine (8-OH-dG) is formed
(Fig. 1). The 8-OHdG undergoes keto-enol tautomerism, which favors the oxi-
dized product 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG). In the scientific
literature 8-OHdG and 8-oxodG are used for the same compound (12).
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122 A. Valavanidis et al.

Figure 1: Reaction of 2′-deoxyguanosine with hydroxyl radicals, radical adducts followed by
reduction to 7-hydro-8-hydroxy-2′-deoxyguanosine, and by oxidatioin to 8-hydroxy-2′-
deoxyguanosine (8-OHdG) or its tautomer 8-oxo-7-hydro-2′-deoxyguanosine (8-oxodG).

Although the other nucleobases of DNA react with HO• in a similar man-
ner, the 8-oxodG lesion is the most abundant DNA lesion because it is rela-
tively easily formed and is promutagenic, and therefore a potential biomarker
of carcinogenesis (12). Experiments showed that the mutagenic potential of 8-
oxodG is supported by a loss of base-pairing specificity, misreading of adjacent
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Biomarker of Oxidative Stress and Carcinogenesis 123

pyrimidines, or insertion of adenine opposite the lesions (13). Mutations that
may arise due to the formation of 8-oxodG involving GC → TA transversion
mutations (10, 14).

In recent years, the 8-OHdG lesions can be detected and an-
alyzed with high sensitivity by high-performance liquid chromatogra-
phy (HPLC), gas-chromatography-mass spectrometry (GC-MS), and liquid
chromatography-mass spectrometry-mass spectrometry (LC-MS-MS) and by
immunohistochemical methods and single cell gel electrophoresis. Determina-
tion and analysis of 8-OHdG can be performed in animal organs and in human
samples (urine, human organs, leukocyte DNA) as a biomarker of oxidative
stress, aging, and carcinogesis (15).

Key Stages of the 8-OHdG Discovery
The discovery of 8-OHdG was first reported in by Kasai and Nishimura in

1984 in their attempt to study and isolate mutagens in heated glucose (as a
model of cooked food). Because of the difficulty to isolate mutagens, which are
very unstable, they developed a method to trap reactive mutagens as guanine
derivatives from the fact that carcinogens and mutagens react with nucleic
acid bases, particularly guanine (16). The same authors found that oxygen-free
radicals are involved in the C-8 oxidation reaction (17). In the following years,
the formation of 8-OHdG was confirmed under exposures/reactions generating
oxygen free radicals, such as asbestos fibers and H2O2. In the second case,
H2O2 and ferrous ions used a reducing agent (Fenton reaction) (18, 19) as did
the carcinogenic cigarette smoke and diesel exhaust particles (20, 21)

In 1986, Floyd and coworkers (22) reported an analytical method for sen-
sitive detection for 8-OHdG in cellular DNA by HPLC with electrochemical
detector (HPLC-EC). The method was used by various scientific groups for
numerous analytical studies of DNA damage in animal organs after the ad-
ministration of various carcinogenic chemical substances and tumor promoters
(23–26).

Similarly, numerous papers in recent years have analyzed levels of 8-
OHdG in human organs and leukocyte DNA and in urine in relation to ox-
idative stress, diet, cancer incidence, and aging. As a result of these studies
8-OHdG has been established as an important biomarker of oxidative stress
(12, 27), of cancer risk to humans by mechanisms of oxygen-free radicals (28,
29), of aging processes including degenerative diseases (30, 31), and in general
as a biological marker of lifestyle and the effect of diet (32, 33).

In the past 20 years, numerous papers appeared in the scientific litera-
ture on the subject of oxidative stress and oxidative DNA damage, the role of
oxygen-free radicals and ROS, and 8-OHdG or 8-oxodG. A search of Scholar
Google in the end of 2008 showed 56,300 papers on oxidative DNA damage,
6,180 for 8-OHdG, and 2,430 for 8-oxodG.
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124 A. Valavanidis et al.

Methodology and Problems for the Analysis of 8-OHdG
The first reported analysis of 8-OHdG as a major and ubiquitous oxida-

tion product of DNA in experimental animals in the urine and in humans was
performed in 1989 (27). Since then several scientific groups have reported the
8-OHdG (or 8-oxodG) analysis by various methods.

The methodology of analysis followed two different strategies: (1) the di-
rect approach designated to single out the DNA lesion by using physical and
chemical methods and final DNA extraction and hydrolysis, and (2) the indi-
rect approach, by preserving the whole DNA structure and the formation of the
lesions are monitored in situ (34). In the first approach the quantitative analy-
sis is performed by HPLC coupled with electrochemical detection (HPLC-EC),
gas chromatography-mass spectrometry (GC-MS), and by HPLC tandem mass
spectrometry (HPLC-MS/MS) (35–37). In the second approach the measure-
ment is performed either by using antibodies that generally exhibit low speci-
ficity or through nicking activity of a specific DNA repair enzyme (38). Also,
by using the enzyme formamidopyrimidine DNA N-glycosylase, the 8-oxodG is
converted into a strand break and the quantitative measurement of the strand
breaks is estimated by the comet assay, the alkaline elution technique, or the
unwinding method (39–41).

Methodological differences among scientific laboratories directly analyz-
ing the levels of 8-oxodG have resulted in a lack of consistency in the re-
sults, especially in the exaggeration of the background levels of 8-OHdG in
human cellular DNA, sometimes by up to two or three orders of magnitude
(42, 43). Although there are variations of levels between cell types and ani-
mal organs, such large differences were attributed to inaccurate experimen-
tal protocols and isolation methodologies that give rise to overestimations
(probably by artefactual DNA oxidation during the procedure). As a gen-
eral trend, levels of 8-oxodG obtained by the indirect approach (enzymatic
assays) were found significantly lower than those of the direct methods of
measurements (34).

The European Standards Committee on Oxidative Damage was set up in
1997 to resolve these issues (supported by the European Commission as a
Concerted Action) with 27 analytical laboratories as members. The participat-
ing laboratories were provided with standard solutions of 8-oxoGua/8-oxodG
in samples of calf thymus DNA, which required hydrolysis either to nucleo-
sides using DNA-degrading enzymes (prior to analysis by HPLC) or to bases
with formic acid (procedure normally used for GC-MS analysis) (44). Three
samples were analyzed by all laboratories in triplicate by HPLC, GC-MS, and
LC-MS-MS against their own standard. The results showed that the analy-
sis of 8-oxodG in standard solutions was more accurate than previous anal-
yses (15). The method LC-MS-MS was found to be demonstrably as reliable,
sensitive, and precise as the best HPLC procedures and had the added advan-
tage of giving unambiguous information on the identity of analytes. The HPLC
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Biomarker of Oxidative Stress and Carcinogenesis 125

with electrochemical detection (EC-coulometric version) is more sensitive than
the EC-amperometric version. The Committee noticed some problems with the
GC-MS method, which resulted in higher values of 8-oxoGua as a result of
oxidation occurring during sample preparation.

The direct approach of measurements, which requires isolation from cells
of tissues, followed by hydrolysis and the release of the DNA lesions, has to
be quantified by very sensitive detection techniques at the output of a chro-
matographic column. Thus, in each of the individual steps, artifactual DNA
oxidation may occur, leading to overestimated levels (45, 46).

Cadet and colleagues (34) used a series of cell treatments methods,
various digestion protocols, and analytical techniques to establish the cel-
lular background level of 8-oxodG in cells. Their results showed that the
steady-state cellular background level of 8-oxodG, in a lymphocyte cell line,
was ∼0.5 lesions/106 DNA nucleosides.

The levels of 8-oxodG were measured in DNA and compared under dif-
ferent methods, using HPLC-EC, EPLC-MS/MS, and HPLC-GC-MS analytical
techniques (47–49). In recent years more sensitive analytical techniques used
for the measurements and background levels of 8-oxodG in human urine were
found at around 1 lesion/106 DNA nucleosides (50–51)

ENDOGENOUS OXIDATIVE DNA DAMAGE

The Levels of 8-OHdG and Endogenous Oxidative DNA Damage
It was known that cellular (cDNA) and mitochondrial DNA (mtDNA) in

aerobic organisms are constantly damaged even in the absence of any exposure
to genotoxic carcinogens. Damaging processes include endogenous sources,
such as DNA instability (e.g., depurination), spontaneous errors during DNA
replication and repair, numerous physiological ROS as a result of oxygen
metabolism, and products of lipid peroxidation. Exogenous sources also con-
tribute to DNA damage, such as ionizing and UV radiation, naturally occurring
radioisotopes, numerous genotoxic phytochemicals, and food pyrolysis products
in diet and contaminants of air and water. Although aerobic biological systems
are protected by antioxidant enzymatic and nonenzymatic antioxidants and by
special DNA repair mechanisms that reduce substantially the levels of dam-
age, a certain steady-state level is measurable as a background at all times
(53).

Attempts to measure and quantify levels of background DNA damage were
made in the 1980s (54, 55). The remarkable progress made in the next 10 years
with respect to analytical sensitivity, structural characterization, and quantifi-
cation of DNA lesions resolved many aspects of the problem. Oxidative stress,
oxygen-free radicals, and lipid peroxidation products as byproducts of aerobic
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metabolism were studied as genotoxic agents of endogenous DNA damage and
were presented in a special issue of Mutation Research (56–59).

The etiology of various types of cancer is the result of DNA modifications
and replication errors in somatic cells that give rise to mutations and sub-
sequently to promotion and development to the malignant tumor. The basal
steady-state levels of oxidative DNA base modifications (such as 8-oxodG) can
be found in all types of cells, mostly from the continuous generation of ROS in
the cellular oxygen metabolism (60). Scientists have long suspected that this
endogenous basal DNA damage might play an important role in the initiation
of carcinogenesis, whereas the environmental-exogenous effects are thought to
mostly influence the stage of tumor promotion. The high incidence of sporadic
cancer that is actually seen in our population can hardly be explained by the
level of exposure to exogenous carcinogens of environmental pollution (61, 62).
The hypothesis of the role of endogenous DNA damage by ROS attracted lots
of attention by other scientists (8, 63, 64).

The correlation of the steady-state levels of oxidative DNA damage (ratio
of the endogenous generation rate of DNA damage and the rate of the repair
of these modifications, taking into account the cellular antioxidants and the
efficiency of the repair system) with the mutation frequencies and the cancer
incidence depended on the availability of sensitive methods of analysis of low
levels of DNA damage. Since the 8-oxodG was the most frequently determined
biomarker for the oxidative DNA damage its quantification at low levels was
very important to test the model for the correlation (65).

The magnitude of endogenous DNA damage by ROS may be enormous.
Each human cell metabolizes approximately 1012 molecules of oxygen per day
with 1% of oxygen metabolism, resulting in the generation of ROS (66). Based
on the urinary excretion of characteristic modified nucleosides produced by
ROS damage to DNA (8-oxodG and thymine glycol), it has been estimated that
approximately 20,000 nucleobases in DNA are damaged in each human cell per
day (67). The high level of oxidative damage by endogenous ROS was supported
by Ames and colleagues, especially in the case of micronutrient deficiencies in
humans (68, 69).

Although some scientists were doubtful as to the high levels of basal oxida-
tive DNA damage, the quantitative estimates of steady-state levels of 8-oxodG,
determined by various techniques in mammalian cells, ranged over several
levels of magnitude. We now know that this was due to discrepancies in exper-
imental procedures. The most recent reported estimates of steady-state levels
of 8-oxodG in the DNA of human lymphocytes by various techniques were in
the range of 0.2–2.0 lesions detected per 106 nucleobases (47).

Relevance of Endogenous DNA Damage in Carcinogenesis
The relevance of endogenous DNA damage by ROS in carcinogenesis is a

very difficult problem, and scientists tried to devise methods to estimate its
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Biomarker of Oxidative Stress and Carcinogenesis 127

contribution. The in vivo studies have to overcome the additional influence of
inflammation, which increases the level of oxidative damage and contributes
to the increase of progression to cancer (64, 70). Also, epigenetic effects by ROS
and oxidative stress, such as various types of signal transduction mechanisms,
lead to apoptosis, modulate cell proliferation, and immune response, thus com-
plicating the estimation of risk (71–73). Studies with antioxidants, such as
vitamin C, β-carotene, and α-tocopherol, for in vivo experiments showed incon-
sistent results. Dietary supplementation of the various antioxidants does not
necessarily improve the antioxidant capacity of the cells and effect the steady-
state levels of 8-oxoG or 8-oxodG in human lymphocytes in a human volunteer
study (74) or in the liver of guinea-pigs (75).

Another approach of scientific research to solve the problem was to study
the influence of DNA repair mechanisms on modulation of oxidative DNA dam-
age. It is known that DNA base modifications are recognized and removed
in eukaryotic cells by specific glycosylases that initiate the base excision re-
pair pathway. For the lesion 8-oxoG, the most important and relevant en-
zyme in mammalian cells is the Ogg1 protein, in which the gene was cloned
(76, 77). Overexpression of Ogg1 in cultured cells increased the repair rate
by several fold but did not reduce the steady-state level or the spontaneous
mutation rate significantly (78). Various scientific groups used the ogg1−/−

knockout mice as a tool to analyze the effect of decreased DNA repair rates
in vivo. Studies showed that there is an increase of the steady-state levels of
8-oxoG with the resulting increases of the spontaneous mutation frequencies
observed in the liver of ogg1−/− mice (79–81). Results showed an increase of
less than five additional 8-oxoG residues per 106 bp (double the spontaneous
mutation rate). Therefore, 8-oxoG seems to play a major role for spontaneous
mutagenesis (60).

The contribution of mitochondria to endogenous DNA damage of the nu-
cleus, where the electron respiratory transport chain is the most important
source of ROS in mammalian cells, was investigated by Epe and colleagues.
The results showed that the contribution of mitochondria to the endogenously
generated background levels of oxidative damage in the nuclear DNA is negli-
gible (82).

PRACTICAL APPLICATIONS OF THE 8-OHdG BIOMARKER

Measurements of the 8-OHdG as a Biomarker in Relation to
Exposures to Carcinogenic Substances
Analysis of urinary 8-OHdG has been established as an important

biomarker to evaluate oxidative stress and to assess risk to cancer after
exposure to various carcinogenic substances, environmental pollutants, and
lifestyle factors (32, 83).
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Tobacco smoking is well known for its oxidative properties and its carcino-
genic potential (84). Elevated levels of 8-oxodG have been found in human
tissues, including lungs and peripheral leukocytes of smokers (85, 86). Also,
increased levels of 8-OHdG have been found in passive smokers in the work-
place exposed to environmental tobacco smoke (87). Environmental tobacco
smoke (ETS) can be a possible cancer risk factor in offspring of experimental
animals. Exposure of pregnant rats to a relevant dose of 1 mg/m3of ETS dur-
ing gestation resulted in a significant increase in 8-oxodG in maternal liver
and in fetal liver and brain (88). The urinary excretion of products of damaged
nucleotides in cellular pools or in DNA has been proved to be an important
biomarker of risk for lung cancer. A cohort of 53,689 (men and women) aged
50–64 years, with 3–7 years follow-up, including 260 cases with lung cancer,
were studied. Urinary excretion of 8-oxodG was higher in current smokers.
Overall the incidence rate ratio (95% confidence interval) of lung cancer was
0.99 (0.80–1.22) per doubling of 8-oxodG excretion and there was no interaction
with Ogg1 genotype (89).

Asbestos fibers have been proved to be genotoxic in the lungs and are a
potential carcinogenic hazard to occupationally exposed workers. Preliminary
studies in cell free systems and in cultured cells showed that asbestos fibers
produce hydroxyl radicals and cause oxidative DNA damage and act syner-
gistically with cigarette smoke (90, 91). Other studies showed that inhaled as-
bestos fibers induce the formation of 8-OHdG in the DNA of white blood cells of
workers highly exposed at the workplace (92, 93); high levels were found in the
urine of asbestos-exposed workers, which correlated positively with duration
of exposure (94).

Diesel exhaust particles and fine particulates, a mixture of organic chem-
icals, heavy metals, and carbon particles with persistent free radicals, are
known by various studies to have the ability to cause oxidative injury and are
potentially carcinogenic. Studies in mice showed a positive correlation of levels
of 8-OHdG and lung carcinogenesis (95). In recent years many studies were de-
voted to studies of the importance of levels of urinary 8-OHdG in human lung
tissues of workers exposed to diesel fumes or oil fly ash (96–98).

Ambient particulate air pollution in urban environments has been asso-
ciated with an increase in lung cancer and cardiopulmonary mortality (99).
The role of free radicals and other ROS formed by particulate matter (PM) has
been linked to their increased toxicity in lung tissues (100). The biomarker
8-OHdG was used to study the effects of hydroxyl radical (HO•) generated
both by coarse and fine PM (especially PM with aerodynamic diameter 10–
2.5 µm, PM10 and PM2.5) due to the heavy metals adsorbed in the pores
and surfaces of the particles (101). Heavy metal content (Cu, Fe, V, etc.)
of particulate matter and their bioreactivity was established as an impor-
tant contributory factor to the enhancement of oxidative DNA damage (102,
103).
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Biomarker of Oxidative Stress and Carcinogenesis 129

There are limited studies on the enhancement of urinary excretion of 8-
oxodG or in the nasal respiratory epithelium in human subjects exposed to
increased urban particulate air pollution, such as bus drivers and students
working and living in central Copenhagen, children in Mexico City, and female
toll station workers in Taipei (Taiwan) (104–107).

The correlation of inhaled particulate air pollution and oxidative DNA
damage mechanisms by ROS (measured as 8-oxodG) or by stimulating cellular
oxidant generation, has been recently reviewed (108–110).

Heavy metals
Heavy metals and some metalloids are known to be carcinogenic to hu-

mans (111). The oxidative concept in metal carcinogenesis proposes the in-
volvement of redox mechanisms, the production of hydroxyl radicals, which
can attack DNA, causing hydroxylation and oxidative DNA damage. In turn,
some of these products of DNA damage (including 8-oxodG) induce mutations
leading to neoplastic transformations (112). Many studies investigated the car-
cinogenic potential of various metal ions via ROS generation (113, 114) and the
induction of 8-OHdG lesion (115–117).

Polycyclic aromatic hydrocarbons (PAHs) have been known from epidemi-
ological studies to be carcinogenic to humans. Elevated levels of 8-OHdG in
urine or white blood cells of workers exposed to PAHs were determined for dif-
ferent working environments (e.g., coke-oven, roofers exposed to coal-tar pitch
dust, etc) (118–121).

Various studies have investigated the effects of known carcinogens, such
as benzene, styrene, and inorganic arsenic, using the urinary biomarker of 8-
oxodG in workers exposed separately in different types working environments.
The results of these studies showed a dose-response effect (122–124). A com-
prehensive review of the use of 8-OHdG as a marker of oxidative DNA damage
in occupational and environmental exposures to carcinogenic substances was
recently published (125).

Epidemiological Evidence for Carcinogenic Risk and 8-OHdG
In recent years, the application of the biomarker 8-OHdG or 8-oxodG in

molecular epidemiology studies as a risk factor for many diseases (especially
cancer) associated with oxidative stress mechanisms is increasing (126). In the
following section we present selected results only for recent years.

Elevated levels of urinary levels of 8-OHdG has been detected in patients
with various malignancies. Chinese scientists measured urinary 8-OHdG in
children with acute leukemia; their results suggested that elevated levels were
associated with oxidative DNA damage. Furthermore, it was found that the
risk was correlated with high levels of Cr exposure (127). Serum 8-OHdG
was significantly increased in patients with colorectal cancer compared with
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the control group. Also, the authors found that the activities of antioxidant
enzymes in the study group were also significantly reduced (128). A recent
study from Japan investigated the increased production of ROS and oxida-
tive DNA damage in relation to hepatocarcinogenesis. Multivariate analy-
sis found that levels of 8-OHdG and fibrosis were significant risk factor
for hepatocellular carcinoma, especially in patients with hepatitis C virus
infection (129).

Salivary analysis of 8-OHdG biomarker in patients with oral squamous cell
carcinoma showed an increase of 65% compared with controls (130). Weight
loss has been shown to increase oxidative DNA damage, thus increasing risk
of some cancer forms, including lung cancer. An epidemiological study with
174 healthy employees showed that one unit decrease of Body Mass Index was
associated with a 2.7% increase in 8-OHdG levels (131). Urinary 8-OHdG lev-
els were also significantly higher among breast cancer patients than among
control subjects, after making adjustments for confounders such as coffee con-
sumption and use of oral contraceptives (132). Oxidative DNA damage, in the
form of 8-OHdG levels, was found elevated for patients with Barett’s oesopha-
gus and adenocarcinoma of oesophagus (133)

CONCLUSIONS

Reactive oxygen species, including oxygen and nitrogen-free radicals, can
cause specific oxidative DNA damage and play a leading role in initiation and
promotion of carcinogenesis. The biomarker 8-OHdG or 8-oxodG, which was
first reported by Kasai and Nishimura in 1984, has been established as a com-
monly measured and sensitive marker of DNA damage due to the hydroxyl
radical attack at the C8 position of the nucleobase guanine or its nucleoside
guanosine. Results showed that this damage, if left unrepaired, may contribute
to mutageninicity and cancer promotion. Many studies in the past 20 years and
improvements in the quantitative estimation of 8-OHdG by various analytical
techniques in blood cells or in urine have established it as a very important
biomarker not only for carcinogenesis but also for aging and degenerative dis-
eases.
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M, Brüning T. Genotoxic risk assessment in white blood cells of occupationally exposed
workers before and after alteration of the polycyclic aromatic hydrocarbon (PAH) profile
in the production material: comparison with PAH air and urinary metabolite levels.
International Archives of Occupational and Environmental Health 2005;78:97–108.

122. Lagorio S, Tagesson C, Forastiere F, Iavarone I, Axelson O, Carere A. Exposure to
benzene and urinary concentrations of 8-hydroxydeoxy-guanosine, a biological marker
of oxidative damage to DNA. Occupational and Environmental Medicine 1994;51:739–
743.

123. Marczynski B, Rozynek P, Elliehausen HJ, Korn M, Baur X. Detection of 8-
hydroxydeoxyguanosine, a marker of oxidative DNA damage, in white blood cells of
workers occupationally exposed to styrene. Archives of Toxicology 1997;71:496–500.

124. Hu C-W, Pan C-H, Huang Y-H, Wu M-T, Chang LW, Wang C-J, an Chao M-R. Ef-
fects of arsenic exposure among semiconductor workers: a cautionary note on urinary 8-
oxo-7,8-dihydro-2′-deoxyguanosine. Free Radical Biology and Medicine 2006;40:1273–
1278.
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