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Abstract
Macrophages function as control switches of the immune system, providing a balance between pro-
and anti-inflammatory responses. To accomplish this, they develop into different subsets: classically
(M1) or alternatively (M2) activated macrophages. Whereas M1 macrophages display a cytotoxic,
proinflammatory phenotype, much like the soldiers of The Dark Side of The Force in the Star Wars
movies; M2 macrophages, like Jedi fighters, suppress immune and inflammatory responses and
participate in wound repair and angiogenesis. Critical to the actions of these divergent or polarized
macrophage subpopulations is the regulated release of inflammatory mediators. When properly
controlled, M1 macrophages effectively destroy invading pathogens, tumor cells and foreign
materials. However, when M1 activation becomes excessive or uncontrolled, these cells can succumb
to The Dark Side, releasing copious amounts of cytotoxic mediators that contribute to disease
pathogenesis. The activity of M1 macrophages is countered by The Force of alternatively activated
M2 macrophages which release anti-inflammatory cytokines, growth factors and mediators involved
in extracellular matrix turnover and tissue repair. It is the balance in the production of mediators by
these two cell types that ultimately determines the outcome of the tissue response to chemical
toxicants.

1. Introduction (The Dramatis Personae)
For most of my early scientific career, when I considered the role of macrophages in tissue
injury, it was their dark side that intrigued me; after all, the movie Star Wars was on everyone’s
mind and there were increasing numbers of publications supporting the idea that by releasing
cytotoxic mediators that contribute to injury and disease, macrophages were very much like
the Death Star. But over the last two decades, as more information has accumulated from my
own laboratory and others, it has become clear that the contribution of macrophages and the
mediators they release to chemically-induced tissue injury is much more complex. There is in
fact, another side to macrophage functioning: suppression of inflammation and wound repair.
Thus, the outcome of the response to tissue injury depends on the balance between the two
opposing forces of macrophages. Furthermore, it appears that the multiplicitous functions of
macrophages are not mediated by a single homogeneous population of cells. But in order to
set the stage for this discussion, it is first necessary to provide some background on
macrophages and inflammatory mediators they release.

Macrophages are mononuclear phagocytes derived from bone marrow precursors. These cells
differentiate into monocytes which circulate in the blood. The majority of monocytes (>95%)
localize in tissues and mature into macrophages where they develop specialized functions
depending on the needs of the tissue. Thus, in the liver, resident macrophages or Kupffer cells
develop a high phagocytic capacity, while in the lung, alveolar macrophages acquire the
capacity to release large quantities of highly reactive cytotoxic oxidants. Macrophages are key
players in the innate immune response. Through the process of phagocytosis, they function as
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scavengers, ridding the body of worn-out cells and debris, as well as viruses, bacteria, apoptotic
cells and some tumor cells (1). Macrophages are also one of the most active secretory cells in
the body releasing a vast array of mediators that regulate all aspects of host defense,
inflammation and homeostasis including enzymes, complement proteins, cytokines, growth
factors, eicosanoids and oxidants. In addition, they are considered professional antigen
presenting cells, one of the major cell types involved in initiating specific immune responses
of T lymphocytes.

Accumulating evidence suggests that the diverse biological activity of macrophages is
mediated by functionally distinct subpopulations that are phenotypically polarized by their
microenvironment and by exposure to inflammatory mediators (Table 1). These divergent
macrophage subpopulations are broadly classified into two major groups: classically activated
M1 macrophages and alternatively activated M2 macrophages. M1 macrophages are activated
by type I cytokines like interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα), or after
recognition of pathogen associated molecular patterns or PAMPs (e.g., lipopolysaccharide
[LPS], lipoproteins, dsRNA, lipoteichoic acid) and endogenous “danger” signals (e.g., heat
shock proteins, HMGB1). Alternatively activated M2 macrophages are further subdivided into
M2a (activated by interleukin [IL]-4 or IL-13), M2b (activated by immune complexes in
combination with IL-1β or LPS) and M2c (activated by IL-10, transforming growth factor-β
[TGFβ] or glucocorticoids). M1 macrophages exhibit potent microbicidal activity, and release
IL-12, promoting strong Th1 immune responses. In addition, they exert anti-proliferative and
cytotoxic activities, which is due in part to the release of reactive oxygen and nitrogen species
and proinflammatory cytokines (e.g., TNFα, IL-1, IL-6) (2,3). It is the M1 population that is
thought to contribute to macrophage-mediated tissue injury (2,4–8). In contrast, M2
macrophages support Th2-associated effector functions. M2 macrophages release IL-10 and
exert selective immunosuppressive activity, and inhibit T-cell proliferation. M2 macrophages
also play a role in the resolution of inflammation through phagocytosis of apoptotic neutrophils,
reduced production of pro-inflammatory cytokines, and increased synthesis of mediators
important in tissue remodeling, angiogenesis, and wound repair. Similar functions are exerted
by tumor-associated macrophages (TAM), which also display an alternative-like activation
phenotype and play a detrimental pro-tumorigenic role. It should be noted, however, that
classification of macrophages into these two groups (M1 and M2) oversimplifies the complex
functional activity of these cells. Macrophage activation is in fact a dynamic process; thus the
same cells may initially take part in proinflammatory and cytotoxic reactions and later
participate in the resolution of inflammation and wound healing (4,9). This suggests that
macrophages undergo progressive functional changes as a result of alterations in their
microenvironment (2,10,11).

2. The Dark Side: Exacerbation of Tissue Injury
The concept that macrophages accumulating in tissues in response to injury or infection have
a “Dark Side” and can contribute to disease pathogenesis predated the first Star Wars movie
by nearly one hundred years. Initially proposed in the late 19th century by one of the “fathers”
of modern immunology, Eli Metchnikoff recognized that stimulated phagocytes might be
capable of doing harm (12). He described the inflammatory process as a “salutary reaction
against some injurious influence” and postulated that “ferments” released by cells at the site
of inflammation might be capable of damaging host tissues (13,14). Over the last century, this
concept has been refined as the functions of macrophages in many disease processes have been
better elucidated. It is now well established that cytotoxic and proinflammatory mediators
released by activated macrophages can contribute to the pathophysiological responses initiated
by diverse xenobiotics in many different tissues [reviewed in (15)]. Thus, there are numerous
examples in the literature describing the contribution of cytotoxic mediators released by
macrophages to injury and disease in the liver, lung, skin and brain. For the purposes of this
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review, however, the discussion will focus on the liver, the major organ of drug and xenobiotic
metabolism.

Some of the earliest experimental evidence linking macrophages with chemically-induced
hepatotoxicity is based on histologic examination of livers collected from animals treated with
toxic chemicals. Thus, after treatment of rodents with hepatotoxic doses of acetaminophen,
carbon tetrachloride, phenobarbital or endotoxin, increased numbers of macrophages are
observed in the liver. Moreover, the specific location of the cells in the liver lobule correlates
with areas that subsequently exhibit damage (15,16). In a number of experimental models, data
clearly demonstrate that macrophages accumulating in tissues following exposure to toxicants
become activated, and contribute to liver injury [reviewed in (15,17,18)]. The pathogenic
process appears to involve the release of cytotoxic, matrix degrading and proinflammatory
mediators by these cells (see further below). That macrophages contribute to tissue injury is
most clearly evident from findings that toxicity is directly correlated with their functional
status. Accordingly, when macrophage cytotoxic/inflammatory activity is blocked with
hydrocortisone or synthetic steroids, hepatotoxicity induced by acetaminophen and carbon
tetrachloride is ameliorated (19–22). Similarly, the accumulation of macrophages in the liver
and subsequent toxicity of these xenobiotics is abrogated in rodents by pretreatment with
macrophage inhibitors such as gadolinium chloride (GdCl3) or dextran sulfate (23–30).
Protection against early damage induced by acetaminophen has also been reported in animals
depleted of macrophages by pretreatment with liposome-encapsulated dichloromethylene
diphosphonate (clodronate) (31). Both GdCl3 and clodronate liposomes also prevent liver
damage induced by allyl alcohol, endotoxin, fumonisin, thioacetamide, cadmium chloride,
concanavalin A and diethyldithiocarbamate (32–42). The importance of macrophages in the
pathogenesis of liver injury is also exemplified by findings that activation of these cells can
augment tissue damage induced by hepatotoxicants. Thus, pretreatment of rodents with Toll-
like receptor agonists such as LPS or polyinosinic:polycytidylic acid (poly I:C) which induce
macrophage accumulation and activation in the liver, results in an exaggerated hepatotoxic
response to acetaminophen, carbon tetrachloride, halothane, trovafloxacin, galactosamine and
Corynebacterium parvum (43–48).

A question arises, however, as to the nature of the macrophage population mediating the
hepatotoxic response. As indicated above, recent studies suggest that these cells possess a
classically activated or M1 macrophage phenotype. Consistent with this idea are findings that
M1 macrophages are activated to release reactive oxygen species (ROS), reactive nitrogen
species (RNS), hydrolytic enzymes, lipid mediators, and proinflammatory cytokines, each of
which has been implicated in hepatotoxicity [reviewed in (15)]. Moreover, abrogating the
production of these proinflammatory mediators by depleting cytotoxic liver macrophages using
GdCl3 or dextran sulfate correlates with protection against liver injury induced by a variety of
hepatotoxicants (24–26,30,31,33,36,37,49–54).

3. The Energy of the Dark Side
In parallel to the forces of The Dark Side, classically activated M1 macrophages contribute to
tissue injury by unleashing a deadly barrage of dark side energy which is in the form of
cytotoxic and proinflammatory mediators. Most notable are ROS and RNS, which have been
implicated in tissue injury induced by a variety of toxicants. ROS and RNS are produced in
significant quantities by macrophages via enzyme catalyzed reactions and during
mitochondrial respiration. Whereas the generation of low levels of ROS and/or RNS under
tonic conditions functions to regulate a number of cellular signaling pathways including
kinases, transcription factors, metabolic enzymes and proteases, during acute inflammatory
responses, these mediators function to destroy invading pathogens and foreign materials.
Evidence suggests that uncontrolled or excessive production of ROS and/or RNS by resident
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macrophages and inflammatory leukocytes contributes to oxidative and nitrosative stress and
consequent tissue injury. Many biological molecules including lipids, proteins, and DNA are
targets for modification by reactive species resulting in diverse pathologic consequences. For
instance, peroxidation of membrane lipids by ROS can lead to the release of arachidonic acid
and the generation of additional proinflammatory mediators including prostaglandins,
thromboxanes, and leukotrienes. ROS can also react with cellular lipids to generate lipid
peroxides and cytotoxic reactive aldehydes (55). Recent studies have also identified several
novel products generated as a consequence of ROS and RNS modification of biological
molecules, including nitrated alkenes, nitrosothiols, S-glutathionylation, and nitrotyrosine
[reviewed in (56,57)]. Elucidating the signaling properties of these new biomolecules currently
represents an area of intense investigation with reference to a wide range of pathologies.

Macrophage-derived ROS and RNS have been implicated in the pathogenesis of liver injury
induced by hepatotoxicants such as acetaminophen, galactosamine, endotoxin, carbon
tetrachloride, 1,2,-dichlorobenzene and alcohol (25,43,52,58–73). Macrophages accumulating
in the liver of animals treated with various hepatotoxicants have been reported to release
excessive quantities of ROS and RNS (34,58,62,67,70,74–76). Moreover, stimulation of
macrophages to produce additional oxidants exacerbates liver injury. This has been observed
in rodents administered vitamin A, Corynebacterium parvum, latex beads or poly I:C, which
activate macrophages in the liver to produce ROS and augment injury induced by
hepatotoxicants such as endotoxin, acetaminophen, carbon tetrachloride and galactosamine
(43,47,60,65,77,78). Conversely, hepatotoxicity induced by galactosamine and 1,2-
dichlorobenzene, as well as carbon tetrachloride and vitamin A, is abrogated by methyl
palmitate, an effective inhibitor of oxidative metabolism in liver macrophages (43,60,61,64).
Protection is also observed in various models of hepatotoxicity using agents that function to
reduce levels of ROS and oxidative stress including allopurinol, hemin, ethyl pyruvate,
glutathione, N-acetylcysteine, chondroitin-4-sulfate, ascorbate, N-acetyl-l-cysteine, Cu, Zn-
superoxide dismutase (SOD1) and oleanolic acid (30,35,59,60,68,69,71,79–85). Moreover,
mice over-expressing antioxidants such as SOD1 or extracellular glutathione peroxidase
(GPX1) are protected from liver injury induced by acetaminophen (86,87). Similar
hepatoprotection has also been produced by administration of a nonpeptidyl mimetic of
manganese SOD (SOD2), as well as by extracellular SOD (SOD3) gene therapy (88–90).
Surprisingly, SOD1−/− mice have also been reported to be resistant to acetaminophen- induced
hepatotoxicity (86); however, this appears to be due to reduced CYP2E1 activity and altered
cellular redox balance. A question arises as to the nature of the ROS involved in hepatotoxicity
and its cellular origin. The findings that mice lacking NADPH oxidase, the major enzyme
mediating the generation of superoxide anion by macrophages, do not display altered
sensitivity to acetaminophen, suggest that this reactive oxygen intermediate is not a critical
mediator of macrophage induced hepatotoxicity in this model (91). It may be that the
contribution of macrophage-derived superoxide anion to tissue injury is dependent on the
hepatotoxicant and the extent to which other inflammatory mediators are produced in the tissue.

The role of RNS in hepatotoxicity also appears to depend on the toxicant. Thus, whereas with
some toxicants, hepatoprotective effects are observed in mice with a targeted disruption of the
inducible nitric oxide synthase (iNOS) gene or in mice treated with an iNOS inhibitor (30,
52,62,63,66,73,92–94), with others, liver injury is exacerbated (95–98). A comparable
protective effect has been observed in the liver during ischemia/reperfusion by blocking
arginase activity which raises nitric oxide levels (99). It has also been reported that nitric oxide
donors protect against hepatotoxicity induced by acetaminophen (100). Thus, it appears that
nitric oxide, or secondary oxidants generated from nitric oxide (e.g., peroxynitrite), may be
cytotoxic or protective depending on quantities of these mediators produced in the tissue, as
well as levels of superoxide anion present, and the extent to which tissue injury is mediated by
ROS (101).
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Another group of mediators that contribute to macrophage-mediated cytotoxicity and tissue
injury are proinflammatory cytokines including TNFα, IL-1, and IL-6, as well as chemokines
such as CXCL8 (IL-8), CXCL2 (MIP-2) and CCL2 (MCP-1) [reviewed in (15)]. These proteins
can induce damage directly in target tissues and/or indirectly by recruiting and activating
additional leukocytes, a process that amplifies the inflammatory response. Most notable among
the pro-inflammatory cytokines is TNFα which has been implicated not only in the
pathogenesis of septic shock and inflammatory tissue injury, but also in the regulation of
apoptosis, acute-phase protein gene expression, and cytochrome P450 activity (15,102–105).
TNFα also stimulates the release of other cytotoxic and immunoregulatory mediators including
IL-1, IL-6, platelet activating factor, colony-stimulating factor, prostaglandins, ROS and RNS
from macrophages and neutrophils which can augment tissue injury (12,106,107). Hepatic
injury induced by alcohol, endotoxin, acetaminophen, carbon tetrachloride, cadmium,
galactosamine and aflatoxin is characterized by excessive production of TNFα(73,84,97,
108–118). Moreover, hepatotoxicity induced by a number of these agents is abrogated by
administration of antibodies to TNFα or a TNF receptor antagonist, and is suppressed in mice
lacking TNFα or TNFR1 (45,97,108–111,116,119–122). These findings demonstrate that
TNFα is indeed a critical mediator of macrophage-induced liver injury.

4. The Jedi Order: Suppression of Inflammation and Initiation of Wound
Repair

Just as in Star Wars, where there was a balancing force to counter the machinations of The
Dark Side; The Jedi, guardians of peace and justice; so it is that there is a tissue protective role
for macrophages. This activity is mediated by M2 macrophages that accumulate at injured sites
later in the inflammatory process; these cells function to restore homeostasis by down
regulating M1 cells and the production of cytotoxic inflammatory mediators, and by
stimulating tissue repair (4,10). Through the release of various cytokines and growth factors,
M2 macrophages also stimulate angiogenesis, stabilize new matrix components, and induce
fibroblasts and macrophages to synthesize extracellular matrix proteins (4,5,123–126). M2
macrophages have been reported to be immunosuppressive in animal models of multiple
sclerosis, rheumatoid arthritis and lung inflammation (127–129). Moreover, in the liver,
depleting or blocking activation or recruitment of M2 macrophages into inflammatory sites
delays repair and/or exacerbates injury and the development of fibrosis induced by
hepatotoxicants such as acetaminophen, carbon tetrachloride and cadmium (6,27,37,118,
130–135).

5. The Jedi Weapons
M2 macrophages, like the Jedi, have specialized field gear for their missions of defense and
repair. In macrophages, these include an ability to release inflammatory mediators and growth
factors such as TNFα, IL-6, IL-10, IL-18 binding protein and TGFβ, as well as various
eicosanoids. These mediators counteract cytotoxic and proinflammatory events and promote
tissue regeneration either directly or indirectly by inducing the production of additional anti-
inflammatory, growth promoting and angiogenic mediators including IL-4, IL-13, lipoxins,
resolvins, protectins and vascular endothelial cell growth factor (VEGF) (27,136,137).
Following hepatotoxicant exposure, expression of protective proteins including IL-4, IL-10,
IL-13, TNFα TGFβ and VEGF increases in the liver (27,63,73,84,115,138–142). Additionally,
upregulation of these mediators protects against chemically-induced hepatotoxicity, while
blocking their activity causes an exaggerated response. For example, administration of IL-13
protects mice from lethal endotoxemia, while treatment of animals with anti-IL-13 antibodies
exacerbates acetaminophen-induced hepatotoxicity and significantly reduces survival (73,
140). Similarly, in mice treated with IL-10, acetaminophen-induced liver injury is ameliorated,
while carbon tetrachloride and acetaminophen induced hepatotoxicity is exaggerated in IL-10
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or IL-13 knockout mice, and in IL-4/IL-10 double knockout mice (73,139,141). The
exaggerated hepatotoxic response is associated with increased production of cytotoxic
mediators including ROS, RNS, TNFα, IFNγ and/or various chemokines.

Within the Star Wars story there were individuals such as Anakin Skywalker who struggled
with which side of The Force they chose to follow. TNFα appears to possess a similar
dichotomous behavior, as it plays a dual role in hepatotoxicity. For TNFα, this is most likely
related to the timing of its release in tissues. Thus, when released early after injury by M1
macrophages, it functions as a proinflammatory and cytotoxic cytokine, while TNFα released
later in the inflammatory response by M2 macrophages plays an essential role in antioxidant
defense and in the initiation of tissue repair (143). This latter activity is due to the ability of
TNFα to function as a potent mitogen, stimulating hepatocyte proliferation following acute
injury (144–146). TNFα also stimulates macrophages and other cells to produce mediators
important in wound healing, including TGFβ, connective tissue growth factor, VEGF, matrix
metalloproteinase-9, IL-6, and chemokines such as CCL2, CXCL8 and CXCL1 (103,147).
These findings, together with the observations that knockout mice lacking the gene for
TNFα or TNF receptor 1 (TNFR1) are significantly more sensitive to liver injury induced by
acetaminophen or carbon tetrachloride than their wild type counterparts, demonstrates the
importance of TNFα in repair of damaged tissue (113–116,148).

6. The War between The Forces: Acetaminophen Hepatotoxicity
Over the past few years controversy has arisen over the protective versus pathologic role of
liver macrophages in hepatotoxicity. Probably the most notable example of this controversy is
related to acetaminophen-induced liver injury. Whereas in some studies it has been reported
that blocking macrophages protects against liver injury, in others, exaggerated hepatotoxicity
is observed. These divergent findings most likely reflect the distinct macrophage
subpopulations responding at different times during the course of liver injury and repair. As
described above, evidence suggests that macrophages play a dual role in the pathogenic
response to hepatotoxicants such as acetaminophen. Whereas initially, classically activated
macrophages displaying an M1 phenotype respond to injury by releasing cytotoxic and
proinflammatory mediators which contribute to tissue injury, subsequently, alternatively
activated M2 macrophages emigrate into injured sites and release mediators that down regulate
inflammation (e.g., IL-10) and initiate tissue repair (e.g., VEGF, TNFα, and TGFβ) Although
these macrophage populations are described as phenotypically distinct, they more likely
represent extremes on a dynamic continuum of macrophages with varying functional capacities
determined by changes in the cytokine milieu in the inflammatory microenvironment. Thus,
the extent to which any given macrophage population contributes to or protects against tissue
injury depends on the stage in the pathogenic process it encounters, and the specific cytokines
and inflammatory mediators generated. In this context, using the same agent to block or delete
macrophages may have different consequences depending on when the agent is administered
and which macrophage population is targeted.

Another factor that contributes to conflicting findings on the role of macrophages in
acetaminophen-induced hepatotoxicity is the method used to eliminate macrophages or to
suppress their activity. For the most part, two major approaches have been used: GdCl3 and
clodronate containing liposomes. Gadolinium is a rare earth metal that is taken up by
macrophages of the reticuloendothelial system (149). Early studies suggested that GdCl3
functions in vivo by blocking phagocytosis and preventing macrophages from becoming
activated, an effect thought to be due to competitive inhibition of calcium mobilization (150–
153). Subsequently, it was shown that GdCl3 exerts its effects by selectively eliminating large
highly phagocytic Kupffer cells, and/or provoking a switch in their phenotype or acinar
distribution (53,154,155). In control animals, the most active Kupffer cells are located in the
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periportal regions of the liver lobule (156,157). After GdCl3 administration, these cells are
localized mainly in centrilobular regions of the liver and are primed to participate in tissue
repair (154,155). The observation that these macrophages express immature monocyte/
macrophage markers suggests that GdCl3 stimulates extrahepatic recruitment of cells from
blood and bone marrow precursors (154). It is noteworthy to mention that after GdCl3 treatment
of animals, macrophages localized in centrilobular regions of the liver continue to release
TNFα which, as described above, plays a key role in repair of damaged liver (138,155,158).
Furthermore, these cells are relatively resistant to a second challenge with GdCl3. These
findings, together with reports that Kupffer cell production of ROS and RNS is reduced after
GdCl3 administration, while IL-10 is unaffected, indicate that GdCl3 targets M1 macrophages,
and that macrophages remaining in the liver are of the M2 phenotype (24,25,27,35,53). This
is also supported by findings that hepatocyte proliferation is either increased or unaffected by
GdCl3 treatment of animals (159,160).

Another method utilized to assess the role of Kupffer cells in chemical toxicity is administration
of liposomes containing clodronate. Intravenous administration of these liposomes results in
depletion of macrophages in the liver via apoptosis (159). In contrast to the selective depletion
of larger macrophages in periportal regions of the liver by GdCl3, both larger Kupffer cells
and smaller ones in midzonal and centrilobular regions are eliminated by clodronate liposomes
(6,27,118,161–163). Studies on the kinetics of macrophage repopulation in the liver after
clodronate liposome administration have shown that macrophages do not begin to reappear for
at least 7 days (164). In contrast to macrophages repopulating the liver after GdCl3, these cells
originate from a macrophage precursor pool in the liver, rather than directly from bone marrow
derived monocytes, and are phenotypically more mature (6,165,166). Furthermore, production
of macrophage colony stimulating factor in the liver plays a crucial role in their differentiation,
maturation and proliferation (167). The fact that administration of clodronate liposomes
prevents acetaminophen-induced increases in protective molecules such as TNFα, IL-6, IL-10,
and IL-18 binding protein in the liver supports the idea that M2 cells are a major target of
clodronate liposomes (27,118).

In summary it is apparent that in the acetaminophen-induced hepatotoxicity model, GdCl3 and
clodronate liposomes target distinct macrophage subpopulations which likely accounts for
conflicting findings on the role of macrophages in the pathogenic process. Thus, while
GdCl3 preferentially targets cytotoxic M1 macrophages for elimination, clodronate liposomes
mainly target M2 macrophages. This idea is consistent with reports that elimination of
macrophages using GdCl3 protects against acetaminophen-induced hepatotoxicity, while liver
injury is exacerbated in animals treated with clodronate liposomes (24,25,27,28,30,31,118,
131).

6. Conclusions (The Final Battle)
Popular culture is often used as allegorical material in the teaching of modern philosophy.
Indeed, there have been numerous philosophical treatises discussing the ever-present power
of The Force and its more seductive Dark Side. The consistent conclusion of these writings is
that The Dark Side, as well as opposing the Jedi, is a necessary consequence of The Force in
terms of cosmic balance. It is reasonable to extend this allegory to the phenotypic forms of
macrophages. In this way, although we may tend to think of the M1 macrophage as evil and
the M2 macrophage as good, as they are involved in injury and repair, respectively, it may be
more accurate to view them as two sides of the same coin, just as Darth Vader and Anakin
Skywalker represent the two sides of The Force in one individual. Thus, it is not so much that
M1 and M2 macrophages have opposing actions at inflammatory sites; rather there is a complex
interplay between the two phenotypes that is necessary for an appropriate response to a toxic
insult. Without doubt, macrophages are an important cellular component of the nonspecific
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host defense system. These are the primary cells responsible for protecting the body from the
damaging effects of invading pathogens and toxins. Although their presence in the body is
clearly essential for appropriate immunological defense and wound repair, an imbalance in
macrophage activation may in fact contribute to tissue injury. It is likely that the extent to which
macrophages contribute to injury or participate in tissue repair depends on the balance of their
phenotypic experience and the timing of their appearance in the liver. Aberrations in the relative
responsiveness of these cells leading to an imbalance between production of proinflammatory
and anti-inflammatory mediators may be important in determining the final outcome of the
pathogenic response to toxicants.
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Table 1

Activated Macrophage Subpopulations
Macrophage Type Activating Signals Phenotype
M1
Classically Activated

IFNγ priming followed by:
TNFα
GM-CSF
LPS
Activation of PAMP

-Release pro-inflammatory cytokines (TNFα IL-1, IL-6), IL-12, IL-23, M1 chemokines

-Express MHC-II

-Present antigen to T cells

-Promote Th1 responses (cell mediated immunity)

-Microbicidal activity

-Cytotoxicity

-Tissue injury/destruction

-Tumor resistance

M2
Alternatively Activated

M2a IL-4
IL-13

-Phagocytosis

-Stimulate proliferation

-Promote tissue repair

-Express MHC-II

-Present antigen to T cells

-Promote Th2 responses

-Express scavenger receptors

M2b Immune complexes + TLR
agonists or IL-1β

-Microbicidal activity

-Phagocytosis

-Express MHC-II

-Present antigen to T cells

-Promote Th2 responses

-Express scavenger receptors

M2c IL-10
TGFβ
Glucocorticoids

-Release IL-10, TGFβ, PDGF

-High levels arginase

-Immunosuppressive

-Anti-inflammatory (down regulate M1 responses)

-Release extracellular matrix proteins (via TGFβ)

-Promote wound repair, tissue remodeling and angiogenesis

-Chronic inflammation
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