Cone Calorimeter Biomass Combustion with Particle Number Analysis

B.G. Mustafa1,2, M. H. Mat Kia1,3, A. Irshad1,4, G.E. Andrews1, H.N. Phylaktou1, H. Li1 and B.M. Gibbs1

1School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK

2Chemical Engineering, University of Maiduguri, Bama Road, P.M.B 1069, Maiduguri, Nigeria.

3Energy Engineering Department, Faculty of Chemical and Energy Engineering, Universiti Teknologi, Malaysia (UTM), 81310 Skudai, Johor, Malaysia

4Dept. of Chemical Engineering, University of Engineering
Technology, Lahore, Pakistan

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7 Cardiff University, Wales
Contents

1. Introduction

2. Experimental Equipment

3. Pine composition and temperature for volatile release

5. Mass consumption rate, HRR and oxygen.

7. Particle size number distribution as a function of size.

8. Particle size mass distribution as a function of size.

9. Conclusions
Introduction

The cone calorimeter is a standard test method for material behaviour in fires and this work shows that it could be used for the characterisation of the combustion of biomass. The principle of the cone calorimeter is to use an electric radiant heater to raise the temperature of the combustion zone and ignite the fuel and 35 kW/m² was used in the present work, as this has been previously shown to be sufficient to establish fully developed combustion of biomass materials such as wood.

The radiant heater represents the surrounding heat for a piece of biomass in a larger combustion zone.

As one of the main fire loads is wood, which is the dominant biomass for energy generation, it is reasonable to use the cone calorimeter to characterise the combustion of biomass on a small scale and pine was used in the present work.
The cone calorimeter was used in the controlled atmosphere mode with an enclosure around the test biomass that enabled the air flow for biomass combustion to be controlled and 19.2 g/m²s was used in the present work. This corresponds to a combustion HRR of 57 kW/m², assuming all the oxygen in the air is consumed.

This air flow will be shown to generate rich combustion at a metered equivalence ratio, Ø, of about 2, which is comparable with the first gasification stage of biomass two stage burning in log burners and pellet burners, where air is added downstream of the gasification stage of biomass combustion.

Soot emissions are generated in this rich gasification stage burning and are shown not to be oxidized in the second stage burning.

The particle size distribution of the particulate emissions after second stage air addition were determined and shown to be very significant with a high number of nano-particles <20nm.
Note that heat extraction does not occur until the end of secondary combustion heat release.

This is the rich burning primary combustion studied in this work.

Hole that transfers the primary rich burn product gases to the second stage oxidation with air added.

Baffle to control the primary/sec. air split.
Moving grate two stage combustion – continuous fuel addition

- Moving grate systems
- Can use wood chips or pellets or logs
- Electricity production using steam turbine
- Two stage combustion with rich primary or underfire air and overfire or secondary air to complete the combustion.
- Used for generation of electricity in the 1 – 50 MW range.

Primary air

Secondary air

Lean burning Oxidation zone

Rich burning gasification zone
Contents

1. Introduction

2. Experimental Equipment

3. Pine composition and temperature for volatile release

5. Mass consumption rate, HRR and oxygen.

7. Particle size number distribution as a function of size.

8. Particle size mass distribution as a function of size.

9. Conclusions
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

6. Chimney

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7
Cardiff University, Wales
Cone calorimeter insulated
Confined atmosphere air box
Air supplied through two pipes in
Bottom of the compartment

Air flow set to achieve rich combustion.
Gas composition is CO, hydrogen and hydrocarbons.
Effectively this is an upward flow gasifier.

1. insulation
2. cooling jacket on load cell
3. Load cell

Test biomass placed on the Load cell here
The Cone calorimeter was exposed to a radiant heat of 35kW/m2 and a fixed ventilation rate of 19.2 g/sm2. Test sample of 100mm x 100mm.
The cone calorimeter has been used to characterise a wide range of biomass. Pine has been used as the reference biomass to develop the experimental methodology.
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

Chimney has a restricted outlet to prevent back flow of air into the primary zone.
Sample point for particle size distribution analysis. Diluted sample of primary combustion products after any secondary heat release.
In the cone calorimeter the heat release rate (HRR) is determined by oxygen consumption.

In this case two oxygen analysers were used, one measured the primary zone outlet oxygen and the other measured the oxygen after secondary dilution air flow and this is the total or overall HRR. For all fuels there is 3.05 MJ/kg of air consumed which is the same as 13 MJ/kg of oxygen consumed.

Thus HRR is determined from the rate of consumption of oxygen. Primary HRR in the gasification zone is controlled by the air flow into the enclosure around the test specimen.

This was varied, but in this work the results for one air flow is shown which is that for the most efficient conversion of solid biomass energy into gaseous CO, hydrogen and hydrocarbons.
Analytical Instruments

1. Gasmet heated FTIR.

This was calibrated for 60 species which enabled a total hydrocarbon measurement to be made as about 50 hydrocarbons were calibrated for. Hydrogen was not measured and was calculated using the water gas shift reaction from the CO measurements – this was for the energy balance. The gas sample was taken from the cone calorimeter chimney exit for the primary combustion. The sample handling system was heated to 180°C and the FTIR detection chamber was heated to 180°C.

2. Cambustion DMS 500

This measures the particle size distribution continuously as a function of time. It is based on the mobility of charged particles in an electrical field. The sample was taken from the diluted flow.
Contents

1. Introduction

2. Experimental Equipment

3. Pine composition and temperature for volatile release

5. Mass consumption rate, HRR and oxygen.

7. Particle size number distribution as a function of size.

8. Particle size mass distribution as a function of size.

9. Conclusions
TGA analysis

- Wheat straw
- Rice husk
- Dry ash
- Corn cobs
- Pine wood
- Sunflower processed pellets
- White wood processed pellets
- Eucalyptus wood
- Grade B torrified wood processed pellets

Dry normalised mass

Hemicellulose decomposition

Cellulose decomposition

Lignin decomposition

Temperature °C

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7
Cardiff University, Wales
Temperature measurements using thermocouples inserted into the pine wood.
Contents

1. Introduction
2. Experimental Equipment
3. Pine composition and temperature for volatile release
5. Mass consumption rate, HRR and oxygen.
7. Particle size number distribution as a function of size.
8. Particle size mass distribution as a function of size.
9. Conclusions
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

![Graph showing various components and flame temperature](image)

NASA CEA software.

Flame Temp.

CO + H₂

CO

H₂

Volume %

Temperature °C

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7 Cardiff University, Wales
Rich mixtures will give high CO and hydrogen for adiabatic equilibrium combustion.

The metered and carbon balance equivalence ratios are different by about a factor of 2, apart from after the flameout when they are in agreement.

It is possible that in spite of the multi-hole gas sampler a mean sample is not being collected. Also, the very high levels of CO and hydrocarbons have an FTIR calibration problem as most hydrocarbons were calibrated up to 500ppm and levels are higher than this and involved an extrapolation. CO was calibrated up to 10% so this should be reliable.
Contents

1. Introduction

2. Experimental Equipment

3. Pine composition and temperature for volatile release

4. Adiabatic Equilibrium composition as a function of equivalence ratio, \(\phi \). Test equivalence ratio by carbon balance and mass loss.

5. Mass consumption rate, HRR and oxygen.

7. Particle size number distribution as a function of size.

8. Particle size mass distribution as a function of size.

9. Conclusions
Mass loss as a function of time.

HRR based on mass loss and by oxygen consumption for primary and secondary combustion.

HRR from mass loss assume 100% combustion efficiency. There are high CO and H\textsubscript{2} emissions which are not burnt due to lack of oxygen., so the actual HRR is lower than that based on mass Loss. The difference between primary and overall HRR is small and is only significant in the 1000-1500s region. This indicates little secondary combustion.
The presence of oxygen in regions of the combustion that are rich, indicated that there are combustion efficiency problems.
Contents

1. Introduction

2. Experimental Equipment

3. Pine composition and temperature for volatile release

5. Mass consumption rate, HRR and oxygen.

7. Particle size number distribution as a function of size.

8. Particle size mass distribution as a function of size.

9. Conclusions
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7 Cardiff University, Wales
Contents

1. Introduction
2. Experimental Equipment
3. Pine composition and temperature for volatile release
5. Mass consumption rate, HRR and oxygen.
7. Particle size number distribution as a function of size.
8. Particle size mass distribution as a function of size.
9. Conclusions
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7
Cardiff University, Wales
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7 Cardiff University, Wales
200nm number are high at rich ϕ
20nm occur at all ϕ
Contents

1. Introduction

2. Experimental Equipment

3. Pine composition and temperature for volatile release

5. Mass consumption rate, HRR and oxygen.

7. Particle size number distribution as a function of size.

8. Particle size mass distribution as a function of size.

9. Conclusions
Particle mass >1000nm is indicated
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

![Graph showing particle size distribution over time](Image)

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7
Cardiff University, Wales
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

The diagram illustrates the change in particle number as a function of time during biomass combustion. Two distinct particle sizes are shown: 20 nm and 200 nm. The y-axis represents the change in particle number concentration (dM/dlogDp) in µg/m³, and the x-axis represents time in seconds. The graph highlights two critical events: ignition at 29 seconds and flame out at 1500 seconds.
The optical obscuration smoke correlates with the 200nm mass not with the 20nm mass.

Optical obscuration measurement of smoke thus gives little information relative to the health hazards of particulate emissions which are caused by the ultra-fine nano-particles with a 20nm peak in this work.
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7
Cardiff University, Wales
Contents

1. Introduction
2. Experimental Equipment
3. Pine composition and temperature for volatile release
5. Mass consumption rate, HRR and oxygen.
7. Particle size number distribution as a function of size.
8. Particle size mass distribution as a function of size.
9. Conclusions
CONCLUSIONS

1. The real-time particle size, number and mass distribution from pine wood biomass combustion was obtained showing a bimodal distribution representing a nucleation mode and an agglomeration/accumulation mode.

2. The particle size distribution on a number basis showed a peak of 20nm in the nano particle size range and a peak of 200nm in the agglomeration range.

3. Ultra-fine particles generated in solid wood combustion was higher than those generated by diesel engines or biomass pellet combustion.

4. The 20nm nano particles will penetrate the lungs leading to asthma and heart related illness due to the effects fine particles have on the lungs.

5. The modified cone calorimeter proved to be a good technique for realistic determination of particle size distributions for biomass when used with a heated FTIR and DMS 500.
Cone Calorimeter Biomass Combustion with Particle Number Analysis
School of Chemical and Process Engineering, University of Leeds, UK

Mass consumption metered Φ

CO Yield g/kg

Equivalence Ratio Φ

Char burn out
Initial flaming combustion

12th ECCRIA The European Conference on Fuel and Energy Research and its Applications 2018 Oct. 5-7
Cardiff University, Wales