Investigations into the Blockage of Pulverised Fuel Pipes on Coal-Fired Boilers Using an Electrostatic Sensor System

Xiangchen QIANa, Yong YANb*, Xiaobin HUANGa

a School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China

b School of Engineering and Digital Arts, University of Kent, Kent CT2 7NT, UK
Outline

- Background
- Electrostatic Sensor System
- Monitoring Data and Discussion
- Conclusion
Background

Hazards of pulverised fuel (PF) pipe blockage
- Uneven fuel distribution between burners may cause severe deviation of temperature distribution in a furnace
- Damage of boiler and serious safety accidents

How to prevent PF pipes from blockage?
- To convey PF with an excessively high velocity
- To configure the operation parameters of a milling system with optimal values
- To monitor the dynamic parameters of PF flow and make adjustments accordingly
Background

• **Challenges** of PF flow measurement
 - Complex dynamic characteristics of PF
 - Variation of boiler operation parameters
 - Harsh power plant environment

• **Available** measurement methods
 - Isokinetic sampling
 - Acoustic emission
 - Optical/Laser
 - Digital imaging
 - Radiometric

✓ **Electrostatic Techniques**
Electrostatic Sensor System

- **Measurement Principle**

 - Flow
 - PF pipe
 - Ring-shaped electrodes
 - Signal conditioning circuit

 [Diagram showing flow and electrodes]

 - Signal Acquisition
 - Multiple Channel Cross-Correlation
 - Signal Feature Extraction
 - PF Velocity
 - Mass Flow Rate

 \[v_c = \frac{r_{12}v_{12} + r_{23}v_{23} + r_{13}v_{13}}{r_{12} + r_{23} + r_{13}} \]

 \[q_{m,s} = A_p \rho_s v_c \beta_s = \alpha v_c^b A_{rms} \]
• **PF ratio between fuel pipes**

\[
\text{Ratio}_{Ci} = \frac{q_{m,s,Ci}}{\sum_{k=1}^{n} q_{m,s,Ck}}
\]

• **Features the electrostatic sensor system**

 ✓ Ring-shaped electrostatic sensor array flushed with inner pipe wall
 ✓ Optimised multiple correlation velocimetry update PF velocity every 0.5 seconds
 ✓ On-line fuel distribution ratio monitoring between fuel pipes
 ✓ Embedded electronic system and fast, reliable fieldbus communication
 ✓ Essentially robust performance and minimum maintenances, etc…
System Installation

Sensing head

Signal processing unit

Primary air pipe

Power & bus switch

Dual Power module

CAN port

Signal processing module

Narrow sensors

Wide sensor

Luyang, 1000 MW opposed wall firing boiler
State Power Investment Co.

Bengbu, 600 MW opposed wall firing boiler
China Guodian Co.
• PF pipe layout of a 600 MW boiler at Bengbu Power Plant

Pipe diameter: \(519\, \text{mm}\)
Number of mills: \(6\) (A to F)
Number of fuel pipes: \(30\)
Monitoring Data at Bengbu Power Plant

1. Before blockage
2. Blockage build up
3. Blockage & Purging
4. After blockage

- PF mass flow rate
- Air mass flow rate
- Air temperature

Graph showing various parameters over time.
Monitoring Data and Discussion

• PF pipe layout of a 1000 MW boiler at Luyang Power Plant

Pipe diameter: 620 mm
Number of mills: 6 (A to F)
Number of fuel pipes: 48 (with bifurcator)
Monitoring Data at Luyang Power Plant

1. Before blockage
2. Blockage build up
3. Blockage
4. Blockage
5. After blockage
On-line monitoring of PF flow in pipes is capable of predicting pipe blockage in an early stage.

A reasonable PF velocity is crucial to prevent pipe blockage.

Multiple bends connections with very short spacings should be avoided.

The distribution of PF between fuel pipes and particle size have little effect on particle deposition.

Continuous monitoring of PF flow is a better way to prevent fuel pipes from blockage as the blockage may be caused by various reasons.
Thanks for your attention!

Further Contact:

- a School of Control and Computer Engineering
 North China Electric Power University, Beijing, China
 Tel: +86 (0)1061771330, Email: xqian@ncepu.edu.cn

- b School of Engineering and Digital Arts
 University of Kent, Canterbury, Kent CT2 7NT, UK
 Tel: +44 (0)1227 823015, Email: y.yan@kent.ac.uk

Acknowledgments:

This work is supported by the National Natural Science Foundation of China (61603135), the International Clean Energy Talent Program (iCET) of the China Scholarship Council and the Fundamental Research Funds for the Central Universities (2018ZD05) granted by the North China Electric Power University.