Influence Of Temperature On The Dielectric Properties Of Unburnt Carbon In Ash From Stoker Furnace Bottom Ash

Presenters: Orla Williams & Shoaib Shah

Georgios Dimitrakis, Joe Perkins, Patrick Daley, Alexis Kalamiotis, Edward Garcia Saavedra, Maria Trujillo Uribe, Juan Barraza Burgos, Ed Lester
Sugar Mill Stoker Furnace

Stoker furnace with an over-grid feeding system

Source: ValveExport
Inside the Furnace
Aim: Gain an understanding of how dielectrics carbon in ash vary with carbon content, mineral composition and temperature

Objective: Develop methodology of measuring carbon in ash in real time using dielectric properties

Experiment:

• Tested 3 industrial ashes and several minerals with varying carbon contents different cavities to ascertain dielectric properties at different carbon contents

• Tested 3 industrial ashes at high temperatures to see how dielectric properties vary with temperature
Dielectric Properties

- All materials interact with materials under the influence of an electromagnetic field.

- The electrical interaction of materials is described by its permittivity.

- The absolute complex permittivity (ε) of a material is:

$$\varepsilon = \varepsilon' - j\varepsilon''$$

- Where ε' is the dielectric constant and ε'' is the dielectric loss factor.

- ε' describes a material's ability to absorb electrical energy, while ε'' is a material's ability to reject this energy as heat.
Dielectric Properties at Different Frequencies
Dielectric Properties of Common Materials at 2.45 GHz

- Alumina Ceramic
- Fused Quartz
- Borosilicate Glass
- PTFE
- Silicon Coated Glass Fibre Belt
- PVC
- Rubber Nitril
- S01
- S02
- Water @25°C
- Water @85°C
- 0.1 Molar NaCl Solution
- Potato @25°C
- Ethanol
- Snow @-20°C
- Ice @-12°C
Cavity 1 – Proof of Concept

- Copper cavity connected to network analyser
- 5 different frequencies between 937 MHz and 5.6 GHz tested
- 3 industrial ashes and 4 minerals tested with varying carbon contents (by weight)
- Carbon contents: Fly Ash 1 - 2.2%, Fly Ash 2 – 10%, Fly Ash 3 – 6.6%
Cavity 1 – 937 MHz – Fly Ash 1

![Graph showing power vs frequency for different ash compositions.](image-url)
Cavity 1 – 937 MHz – Minerals – Calcium Carbonate

![Graph showing frequency response with different percentages of carbon.](image-url)
Cavity 2 – Cavity Perturbation Technique

- Vector Network Analyser
- Automated motor
- Associated computer and screen
- Furnace
- Cavity
- Furnace Temperature control unit
Dielectric Constant of Fly Ash 1 with Varying Carbon Content
Dielectric Loss of Fly Ash 1 with Varying Carbon Content

![Graph showing dielectric loss with varying carbon content in different fly ash compositions.](image-url)
High Temperature Dielectric Properties of Coal

The graph shows the variation of dielectric constant e' and dielectric loss e'' with temperature ($°C$) for two frequencies: 910 MHz and 2470 MHz. The dielectric constant e' generally decreases with increasing temperature, while the dielectric loss e'' increases sharply above a certain temperature.
High Temperature Dielectric Constant of Ash at 2470 MHz
High Temperature Dielectric Loss of Ash at 2470 MHz
Summary

• Proof of concept tests show that the dielectric properties of ash varies with carbon content

• Signal depends on carbon content and mineral composition of the ash

• Dielectric properties of coal and unburnt carbon in ash are very different

• Up to 400 degrees, dielectric constant of industrial ashes is stable, and then drops with increasing temperature

• Knowledge of dielectric properties can be used to develop continuous inline monitoring system for carbon in ash contents
Thank you for listening

For further information contact
Orla.Williams@Nottingham.ac.uk

The authors would like to thank the British Council Newton Fund, the Engineering Doctorate Centre for Carbon Capture and Storage and Cleaner Fossil Energy, Drax Power and British Sugar their support throughout this project