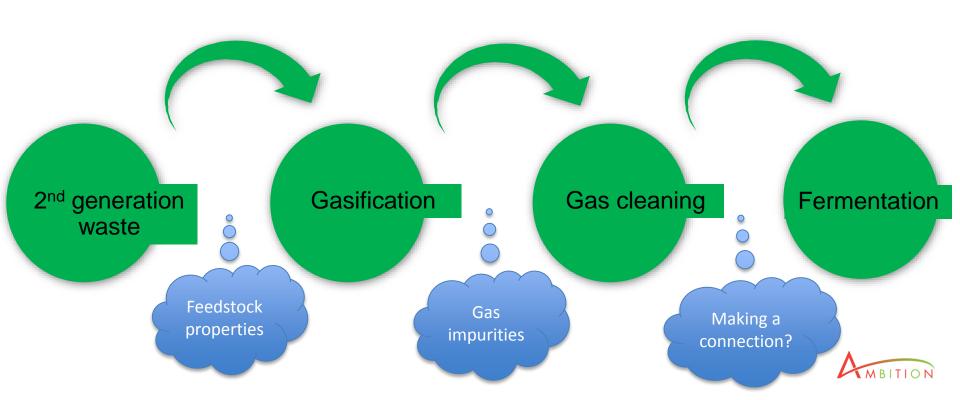


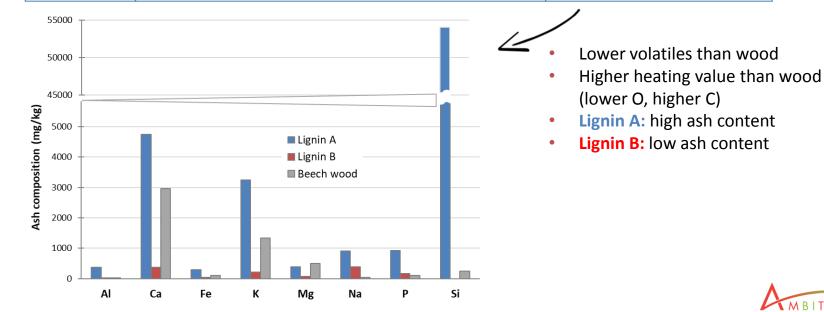
ADVANCED BIOFUEL PRODUCTION WITH ENERGY SYSTEM INTEGRATION

Connecting the world of gasification with syngas fermentation

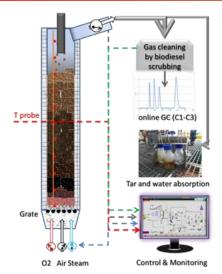


Content

- Background information
- The challenge
- The technology
- Current results
- Conclusions

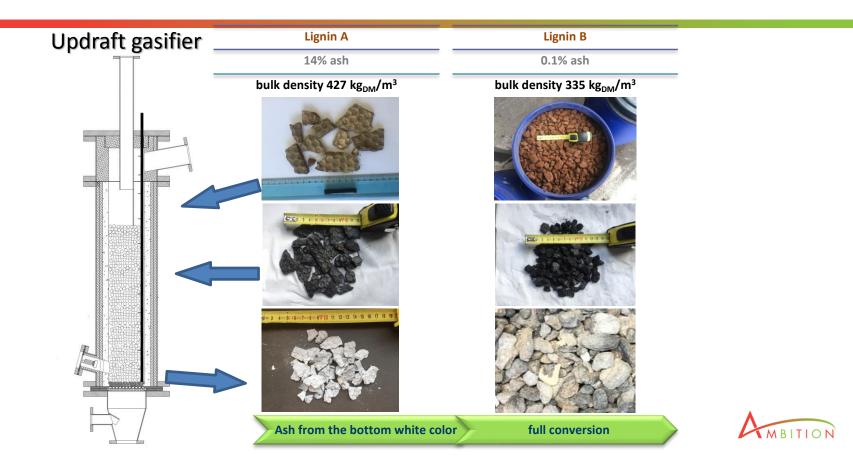


Background information

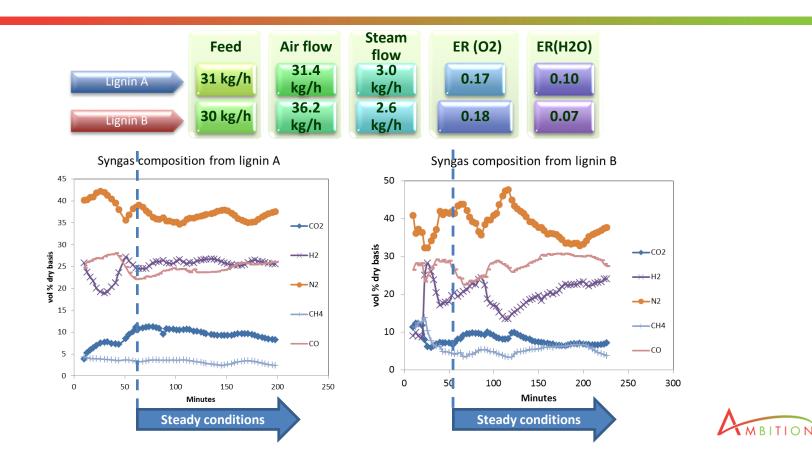

Challenges

On dry basis	C (wt%)	O (wt%)	H (wt%)	N (wt%)	S (wt%)	Cl (wt%)	Ash (wt%)	Volatiles (wt%)	LHV (MJ/kg)
Lignin A	47.2	33.0	5.6	1.3	0.18	0.020	14.0	65	18.4
Lignin B	57.7	33.8	6.2	0.8	0.13	0.002	0.1	72	22.9
Beech wood	47.5	48.8	6.4	0.2	0.02	0.010	1.3	81	17.8

Fixed Bed gasification at ENEA



View of the gasifier from the bottom



Fixed Bed gasification at ENEA

Results from Fixed Bed Gasification of lignin A and B

Summary of Fixed Bed gasification for lignin A and B

	Lignin A	Lignin B	
	%	%	
N ₂	36.4	38.7	%
H ₂	26.0	20.1	%
СО	24.8	28.0	%
CO2	9.54	7.7	%
CH ₄	3.0	5.1	%
C ₃ H ₈	0.09	-	%
C ₂ H ₆	0.0524	0.11	%
C ₂ H ₄	-	0.08	%
H ₂ /CO	1.05	0.71	-
tar	75	82-93	g/Nm ³
LHV	6.35	6.78	MJ/Nm ³

Average syngas composition at steady conditions, clean and dry basis

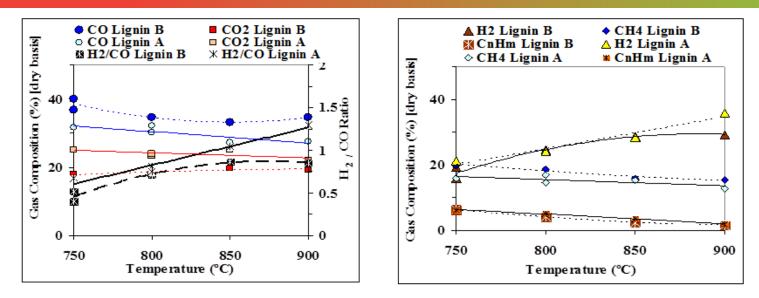
Fluid bed gasification at LNEG

Gasifier Total Height (m): 1.5 Bed Dimensions (cm): 8

Temperature (°C)		Experimental Conditions				
750						
800		Lignin Flow Rate = 7g daf/min m/Lignin – 0.35 g/g daf Equivalent				
850		Ratio (ER) = 0.13 Oxygen				
900						
ER	Ex	perimental Conditions				
0						
0.1	Lignin Flow Rate = 7g daf/min Temperature = 800 °C					
0.2	Steam/Lignin – 0.35 g/g daf Oxygen					
0.3						
Steam/Lignin Ratio	(g/g daf)	Experimental Conditions				
0		Lignin Flow Data - 7g daf(min				
0.37		Lignin Flow Rate = 7g daf/min Temperature = 800 °C				
0.45		Equivalent Ratio = 0.13				
0.70		Oxygen				
1						

Fluid bed gasification at LNEG

Coupled to hot syngas cleaning


Two step process

- 1. Fixed bed dolomite (or olivine/limestone
- 2. Fixed bed Ni-catalyst (11% Ni)

Results from Fluidized Bed Gasification of lignin A and B

> The same trends were obtained for both Lignins. The rise of temperature favoured the formation of H_2 , probably, at the expenses of hydrocarbons (C_nH_m) and tar conversation.

> Lignin A led to lower CO and higher CO₂ contents, though the total CO+CO₂ are similar. Thus, Lignin A led to higher H₂/CO ratio than Lignin B.

> The increase of temperature led to a increase in H_2/CO ratio. Only for temperatures below 850°C, it was possible to obtain H_2/CO ratios lower than 1 for Lignin A.

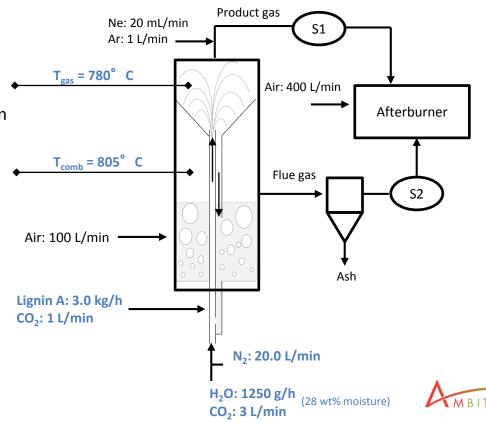
Summary of Fluid Bed gasification for lignin A and B

Selected Conditions:	800°C, ER=0.13					
	Steam/Lignin=0.35 g/g daf					
	Lignin A	Lignin B				
CO	28	28				
CO ₂	21	15				
H_2	22	20				
CH_4	14	15				
C _n H _m	5	3				
H ₂ /CO	0.78	0.71				
CO:CO ₂ :H ₂	1:0.8:0.8	1:0.5:0.7				
Tar (g/m³)	15	108				
CGE (%)	75	76				
Before the Quenchi	ing System					
NH ₃ (mg/Nm ³)	1 566	632				
H ₂ S (mg/Nm ³)	1 185	993				

Lowest H ₂ /CO	ER = 0.13, Steam/Lignin = 0.35 g/g daf
0.52	750°C Lignin B
0.67	750°C Lignin A

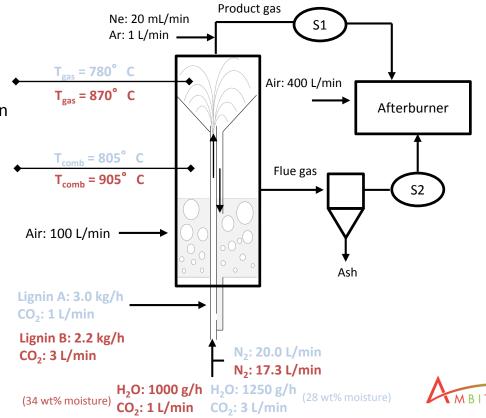
Similar values were obtained for both Lignins.

> Tar content was quite different.


► NH₃ and H₂S contents were also different, which agrees with the differences in N and S contents in lignins.

Lignin A

- Bed material: fresh Austrian Olivine.
- Additional N₂ in riser for good fluidization.
- Lignin A: Low gasification temperature results in stable operation and a trade-off between fuel conversion and release of contaminants.



Lignin A Lignin B

- Bed material: fresh Austrian Olivine.
- Additional N₂ in riser for good fluidization.
- Lignin A: Low gasification temperature results in stable operation and a trade-off between fuel conversion and release of contaminants.
- Lignin B: higher gasification temperature to increase conversion and reduce tar content.

Product gas composition - impurities

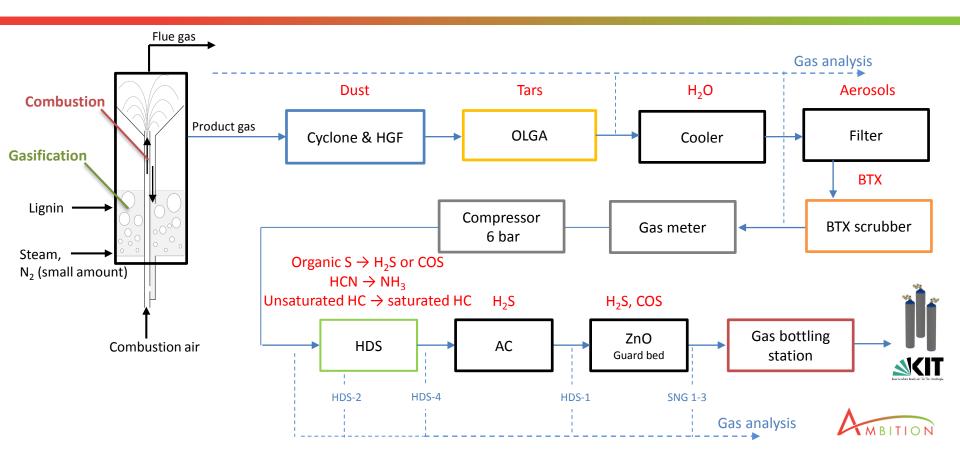
Main gas components, dry basis (vol%)	Lignin A	Lignin B
со	13.9	15.6
H ₂	8.6	14.1
CO ₂	17.9	18.0
CH ₄	5.9	6.9
N ₂	45.1	39.2
C ₂ H ₂	0.1	0.3
C ₂ H ₄	2.8	2.0
C ₂ H ₆	0.3	0.1
Benzene	0.5	0.7
Toluene	0.1	0.1
Ar*	2.1	2.2
Trace components	2.3	1.1
H ₂ O (wt%)	42.6	42.1
H ₂ /CO	0.62	0.90
Product gas flow (L/h)	2960	2970
Product gas energy LHV (kW)	8.0	7.7

Trace components, dry basis (ppmv)	Lignin A	Lignin B
Sum C ₃	3100	350
Sum C ₄	330	350
Sum C ₅	520	230
Sum C ₆	80	0
H ₂ S	1100	640
cos	30	20
Thiophene	34	18
Methylmercaptane	32	2
Other S-organics	9	3
NH ₃	8770	4160
HCN	1290	115
HCI	8	12
Tar	5990 (34 g/m³)	4660 (30 g/m ³)
Ne*	410	405

 Lignin B: Lower C2+ hydrocarbons content

S-compounds

- Lignin B: lower than Lignin A
- Lower S-content in lignin
- High ratio H₂S/COS > 30, for wood is ~10


<u>NH₃, HCN</u>

- Lignin B: lower than Lignin A
- Lower N-content in lignin

<u>HCI</u>

- Lignin B: slightly higher
- Lower Cl-content in lignin but gasification at higher T

	Vol%		ppmV		Vol%		ppmV		Vol%		ppmV		Vol%		ppmV
СО	28.0	Benzene	6022	СО	30.4	Benzene	4684	СО	32.3	Benzene	86	СО	32.3	Benzene	13
H ₂	33.4	Toluene	211	H ₂	31.9	Toluene	319	H ₂	28.3	Toluene	<10	H ₂	28.5	Toluene	<10
CO ₂	23.8	C3	85	CO ₂	21.9	C3	113	CO ₂	23.2	C3	290	- CO ₂	23.3	C3	323
CH ₄	8.8	C4	87	CH ₄	9.1	C4	16	CH ₄	11.3	C4	106	CH ₄	11.7	C4	37
N ₂	1.0	C5	51	N ₂	1.4	C5	1					•			
C_2H_2	0.03	C6	7	C_2H_2	0.14	C6	19	N ₂	1.4	C5	17	N ₂	1.6	C5	63
C_2H_4	1.6	H₂S	115	C_2H_4	1.7	H ₂ S	89	C ₂ H ₂	<0.0	C6	0	C ₂ H ₂	<0.0	C6	8
C ₂ H ₆	0.05	COS	4	C ₂ H ₆	0.06	COS	7	C ₂ H ₄	<0.0	H ₂ S	7	C_2H_4	0.0	H ₂ S	0.1
tar	0.3	Other S-	3	tar	0	Other S-	4	C_2H_6	2.4	COS	1	C_2H_6	2.5	COS	0.0
Unsaturated HC → saturate		saturated	tar	0.00	Other S-	0	tar	0.00	Other S-	0.0					
Combustion air HDS		A	С		ZnO Jard bed		Gas bo stat	-							
				HDS-2	HDS-4			HDS-1	SNG	1	analysis - ►	A	MBITION		

Conclusions

- Both lignin A and B gasified successfully. Feedstock pre-treatment requirements are very different. Improvements can be made at the biorefinery to feedstock quality.
- Biorefinery processing not only affects the form of the lignin, but also the type of impurities in it.
- Impurities in feedstock end up in gas and need to be removed. So far tar, unsaturated HC, cyanide and benzene have been identified as problematic. Question for fermentation is to what extent the NH₃ and H₂S are acceptable and to what levels the rest needs to be removed.
- H₂/CO ratio is between 0.5 and 1 in most cases. Further shifting is necessary if more hydrogen is needed. Particular strain used for fermentation is determining the final ratio of H₂/CO/CO₂

The Ambition TEAM

THANK YOU FOR LISTENING

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement number 731263

