

Funded by European Union H2020-LCE33-2016-2017 Grant 731263

MBITION

ADVANCED BIOFUEL PRODUCTION WITH ENERGY SYSTEM INTEGRATION

Bernd Wittgens (SINTEF), Jaap Kiel (ECN/TNO) Fransisco Girio (LNEG)

Some introductory comments on Transportation Energy

Jeedstocks

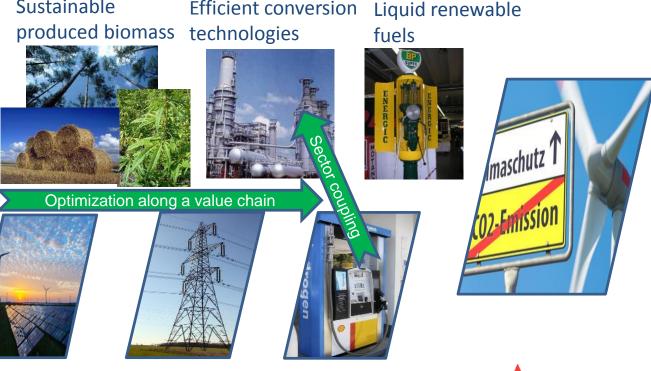
a each individual

່ວເems are needed for

y, chemicals, materials and food/feed.

Jved environmental record, means energy AND

- Our market economy is based on growth
- of Investment Growth is based on energy, cheap energy w^L **indantly** available a fuels are more expensive
- Today's energy systems
 - Limited cross sectorial integration
 - Fossil energy carriers ' Energy are ' integration Low Energy are ' stainat' ٠
- New integration
 - •
 - Biomass as t ۰
 - Renewable Comprehens. • carbon efficier.
 - Transportation: symbiosis of electricity, gaseous and liquid fuels


Energy transition:

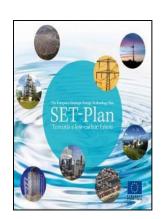
De(fossil)carbonization of transport

Efficient conversion

Phase out fossil fuels

Simultaneously **Reduce/remove carbon** loss from feedstock during processing

Hydrogen*Pro* Energiewende Hans-Jörg Fell HydrogenPro, Norway


Competitive renew-Electrification of Hydrogen as able electricity society and industry energy carrier

Sustainable

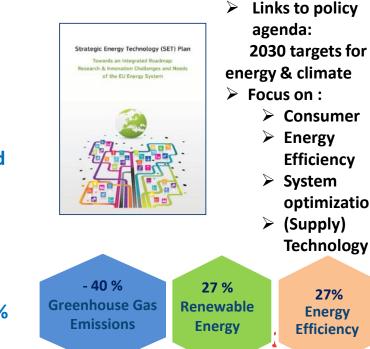
The Scene for Ambition

- Links to policy agenda: 2020 targets for energy & climate
- Focus on individual technologies with market and target impact up to 2020

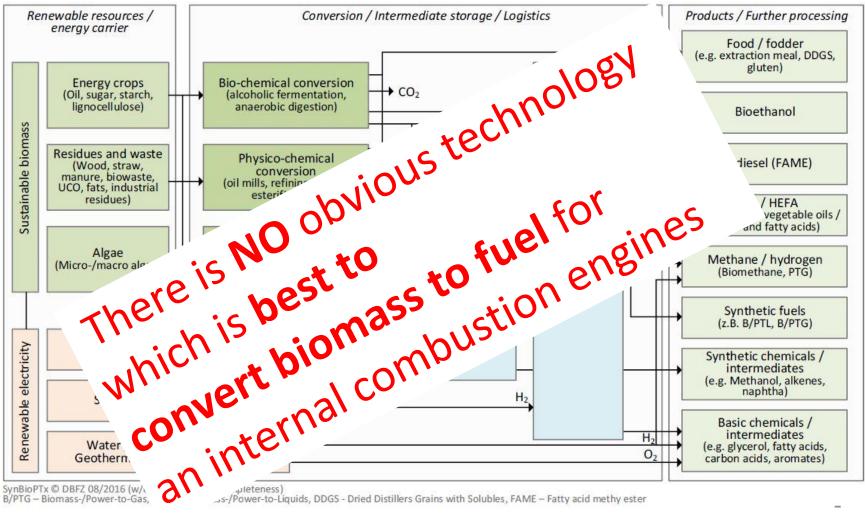
-20 % Greenhouse Gas Emissions

20 % Renewable Energy Efficiency

20%


Energy

RED II


- Renewable target: 32%
- > Targets fro Renewable **Transport:**
 - ▶ 14% overall.
 - 3.5% advanced

Paris Agreement

- Limit Global
 - warming to 1.5°C
- **Reduction in CO2** emissions by 80-95%

> Energy Efficiency > System optimization \succ (Supply)

AMBITION – Scope

The AMBITION project is dedicated to the

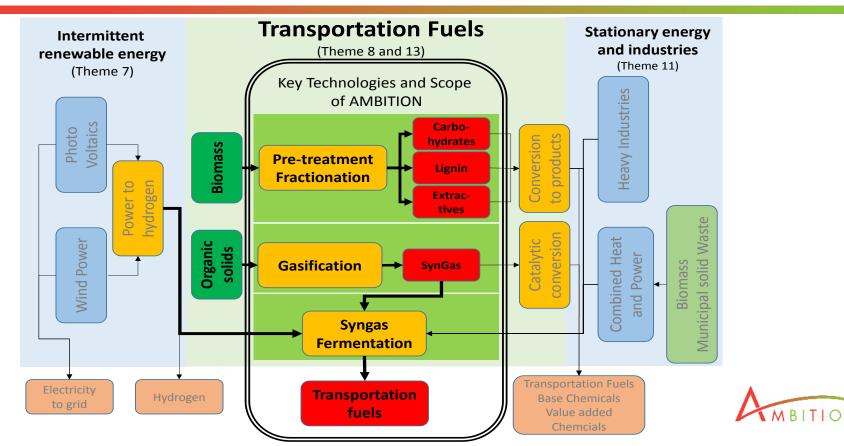
- definition and initial execution of a European Common Research and Innovation Agenda (ECRIA) considering key unit operations in the production of next generation liquid biofuels
- **subsequently linking energy systems** (grid electricity and biofuels in particular) to improve overall efficiencies.
- specific advances shall be adaptable to existing biofuel production schemes or integrated to enable new considerably improved, environmentally friendly and economically competitive processes.

AMBITION – Objectives

Creation of a strong, focused and sustainable research partnership:

- develop a long-term research agenda and strategy, which defines research priorities, technology development and innovation in a transnational setting,
- develop of joint projects/programmes, including researcher exchanges and joint use of installations.

Development of innovative key unit operations in biofuels production:

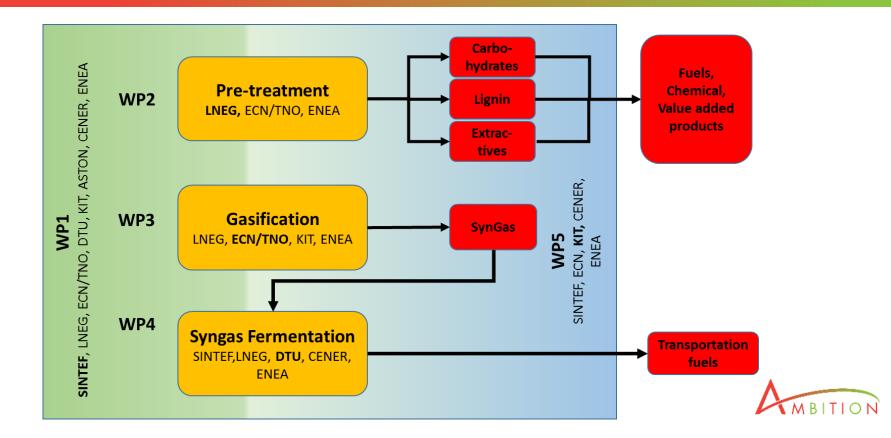

- □ Biomass pre-treatment / fractionation,
- □ Gasification and gas cleaning and conditioning,
- Biochemical syngas conversion to liquid biofuels (syngas fermentation)
- ➡ Facilitate their integration along a value chain as well as across value chains

Evaluation of the technical, economic and environmental feasibility of integrating biofuels production from lignocellulosic biomass into today's energy system

AMBITION Approach

Advanced biofuel production with energy system integration

AMBITION – Partners

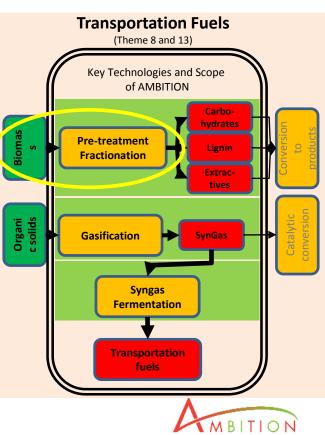


AMBITION – Work packages

WP	WP leader	Title	
1	SINTEF	Common agenda, coordination and networking	
2	LNEG	Efficient low-temperature pre-treatment to generate valuable sugars and lignin streams	
3	ECN>TNO	Gasification and gas cleaning and conditioning	
4	DTU	Synthesis Gas Fermentation	
5	KIT	Energy system integration and process design	
6	ASTON	Exploitation, Dissemination and Communication	
7	SINTEF	Project Management	

Work package structure and partner involvement

AMBITION – Specific objectives (WP1)

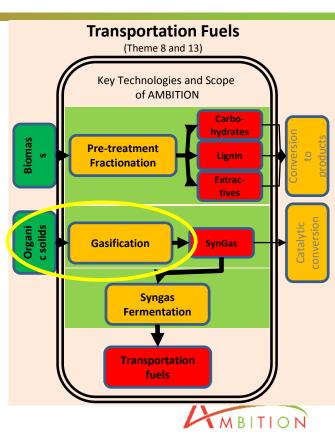

Common agenda, coordination and networking

Tasks	Challenges and actions
3 Shared use of Research Infrastructures	 Overview of relevant infrastructures Link to ideas (T2) and research mobility (T4)
2 Foster a culture of co-operation to establish a strategic long-term vision and synergies	 Identify stake holders Scheduling of workshops for idea generation
4 Researcher exchange / mobility	 Identify topics and infrastructure for research exchange Execute research sprints
1 Definition of a common research and innovation agenda	 How can we make an impact in Europe? Involve key players both in R&D and industry

AMBITION – Specific objectives (WP2)

Biomass pre-treatment:

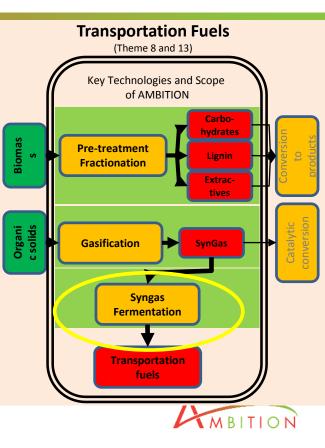
- Development of disruptive methodologies for lignocellulosic biomass (LCB) pre-treatment based on low-temperature (120-140°C) processes with a low energy requirement and use of non-hazardous catalysts and/or green solvents to avoid the use of mineral acids, as a key unit operation for high-addedvalue valorisation of all LCB fractions (sugars and lignin); in combination with:
- Energy-efficient (integrated) separation and recovery of all LCB fractions in LCB pre-treatment.



AMBITION – Specific objectives (WP3)

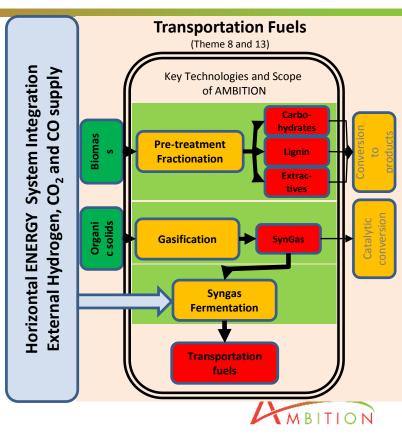
Gasification and gas cleaning and

conditioning:


- Adaptation of gasification technologies to allow their application for the valorisation of biorefinery residues, in particular ligninrich fractions from, e.g., 2G bioethanol production.
- Development of energy-efficient, economically viable pathways for syngas cleaning and conditioning, with particular focus on syngas valorisation by means of syngas fermentation.
- Development of pathways for improved high-added-value carbon utilization from the biomass with particular focus on obtaining proper H₂/CO ratios for downstream syngas processing
- Operation optimization: temperature, steam, bed material/additives, feed-in of H₂ from intermittent energy sources or recycling of CO₂.

AMBITION – Specific objectives (WP4)

Biochemical syngas conversion to liquid biofuels (syngas fermentation):


- Engineering of suitable bacterial strains and optimize the production of **1-butanol** with increased tolerance to product inhibition from syngas.
- Optimization of fermentation conditions for optimal production of 1-butanol from syngas.
- Optimization of the biocatalytic production of butyric acid, enzymatic esterification with 1-butanol to the ester butyl butyrate as a drop-in aviation biofuel.
- Evaluate the potential inhibitory effect of the impurities present in industrial scale syngas.

AMBITION – Specific objectives (WP5)

Process design and integration

- Design and optimize an innovative scheme for efficient material and energy usage is essential to improve the overall environmental and economic performance:
 - (i) the combination and integration of a thermochemical and a bio-chemical process route (unit operations)
 - (ii) the consideration of external hydrogen supply and CO₂ utilization (energy systems)
- Comparative techno-economic assessment in regard to most efficient process configurations
- Verification of major key indicators related to environmental impact

Preliminary Recommandations

- Base research for new technologies
- Enable building of large enough pilot systems
 - Testing of unit operations
 - Optimizing and trouble shot of sub-systems
 - System integration
 - Pre-pare for scale up of complete
- Enable building of demonstration plants
 - First of a kind will (most probably not be commercial viable)
 - Time on stream to determine/solve long term operational challenges
- We can't wait for the best plant; development "on the fly" is risk; therefore few try it

Thanks for your attention!

