CONVERSION OF MUNICIPAL SOLID WASTES INTO VALUE-ADDED PRODUCTS AS A GREEN ALTERNATIVE IN BIOMASS AND WASTE MANAGEMENT

Alberto Veses Roda

12th ECCRIA CONFERENCE Cardiff University, Cardiff, UK 5th-7th September 2018

1. BACKGROUND

- Billions of MSWs are generated
- Generated MSWs is expected to increase
- Only ¼ of the total MSWs is recovered
- Horizon 2020 expectation: Expensive future task (no incineration and landfilling)

PYROLYSIS

Production of liquid, solid and gas fractions that can be used directly either in different energetic infrastructures or as value-added chemicals, providing the necessary energy to support the process.

Results a more environmentally beneficial process than conventional MSWs incineration systems since smaller amounts of NOx and/or SOx can be generated

Offers the opportunity to wash the syngas previously to its application reducing the size and cost of gas cleaning systems.

2. MAIN CHALLENGES

- \checkmark To obtain a composition and size as uniform as possible
 - □ Pre-processing of the feedstock to make it homogeneous and biologically stable included the following treatments:
- a) Saturation in autoclave at 150°C for 15minb) Extraction of ferric; and non-ferric compounds, impurities
- c) Drying process.

Finally, feedstock is transformed in pellet form and was used directly.

- \checkmark The addition of low-cost catalysts
 - Calcined dolomite

 \checkmark Lack of information about reactor design and process

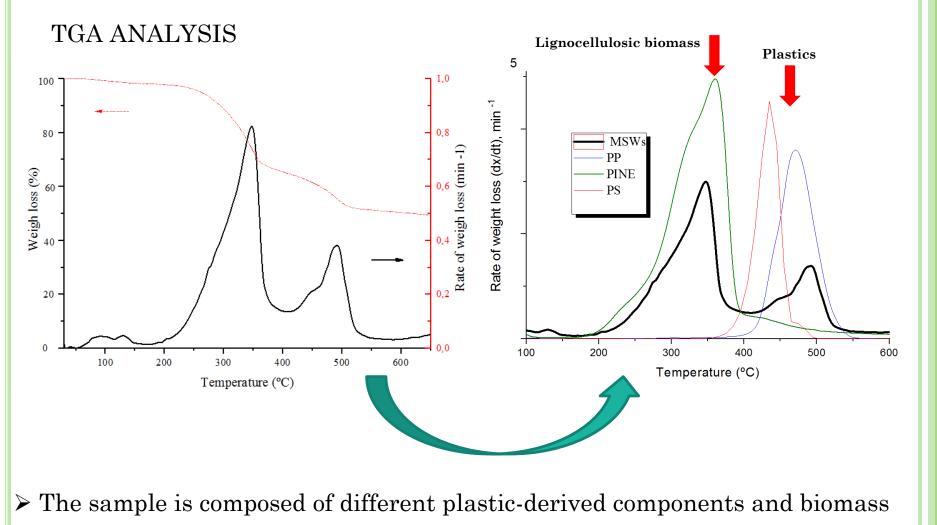
□ Pyrolysis + cracking in a fixed bed reactor

3. FEEDSTOCK CHARACTERIZATION

Main properties of stabilized MSWs. Left: (proximate analysis, Ultimate analysis and Heating value. Right: Trace elements.

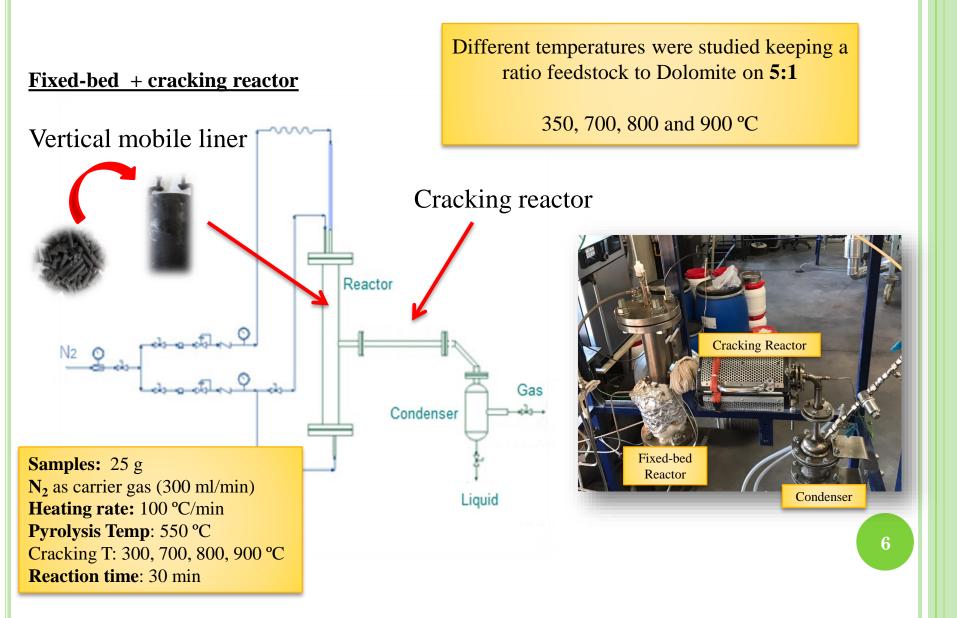
Property	MSWs
Proximate analysis (wt. %)	
Moisture	4.7
Ash	32.5
Volatiles	53.6
Fixed Carbon	7.3
Elemental composition (wt.%)	·
Carbon	36.5
Hydrogen	5.2
Nitrogen	1.4
Sulphur	0.2
Oxygen	29.2
HHV (MJ/kg)	14.7

Trace elements	(ppm)
Cl	5600
Al	9984
Са	52214
Fe	3248
К	9515
Mg	5033
Mn	164
Na	13393
Р	3046
Si	65222
Ti	1129



• Availability (Economic)

• Potential value (High Volatile matter and biologically stable)


✓ Pyro-Cracking

3. FEEDSTOCK CHARACTERIZATION

> 550 °C seems to be sufficient temperature to carry out the devolatilisation of this particular MSWs to complete its total conversion

4. PYROLYSIS AND CRACKING REACTOR

5. PRODUCTS YIELDS

Experimental conditions Yields (wt %) (T_{Pvrolvsis} - T_{cracking} - Catalyst) Liquid Char Non-condensable gas Total 550°C-350°C 30.5 50.2 14.9 95.6 550°C-700°C 21.9 49.0 25.9 96.8 35.1 550°C-800°C 14.7 98.9 49.1 550°C-700°C-Dolomite 8.7 49.8 39.1 97.5 550°C-800°C-Dolomite 49.7 41.0 99.3 8.5 550°C-900°C-Dolomite 6.8 49.0 43.6 99.4 550°C-900°C-Dolomite - Cycle 1 49.5 42.5 7.7 99.7 550°C-900°C-Dolomite - Cycle 2 48.1 41.18.7 98.0 550°C-900°C-Dolomite - Cycle 3 7.8 48.1 41.8 97.7 Low cracking temperatures led to severe operational problems, where a great part of the liquid was formed by undesired heavy waxes The higher temperature cracking the lower operational problems were observed and thus, lower liquid yields were obtained □ Catalysts action entailed higher non-condensable gases. A greater increase in temperature (900 °C), was reflected in the highest gas yield (close to 45 wt%) by drastically reducing liquid yields down to 6.8 wt% and therefore, minimizing operational problems • Char yields remained at the same range (50 wt. % approximately). The yields kept approximately at the same values after several regeneration cycles of the catalyst and no remarkably negative effects were evidenced

6. PRODUCTS CHARACTERIZATION

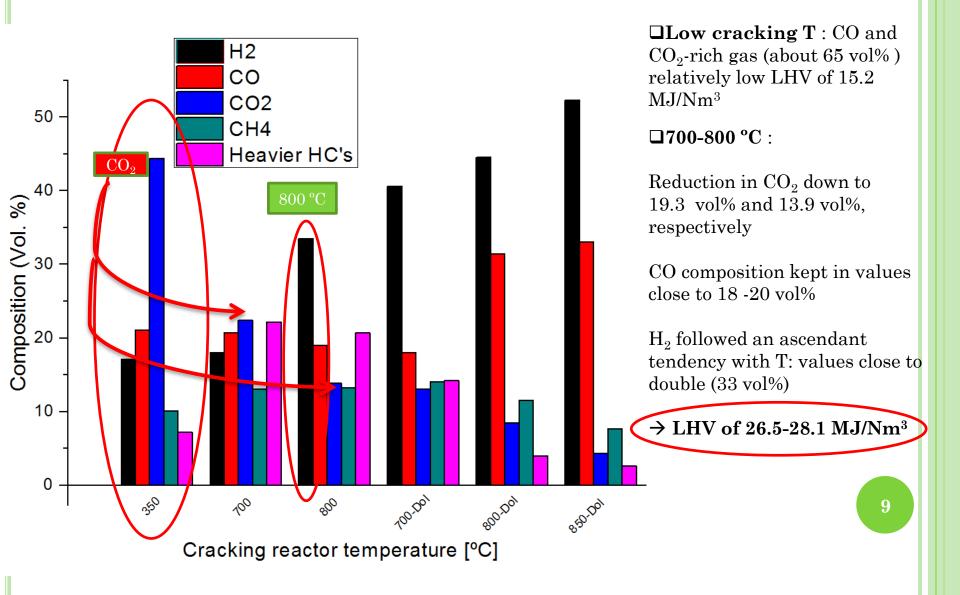
CHAR

Property	MSWs
Proximate analysis (wt%)	
Ash	74.7
Volatile matter	12.96
Fixed Carbon	10.43

Ultimate analysis (wt%)

С	22.6
Н	0.6
Ν	1.0
S	0.6
0	6.5
HHV (MJ/kg)	7.3
LHV (MJ/kg)	7.2

High Ash content
Relative poor heating value

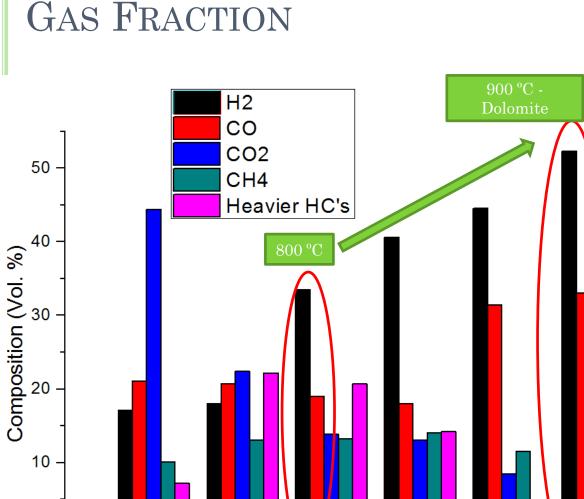

Potential applications

 \checkmark As a energy source to cover a part of the thermal requirements of the process.

✓ Due to the high ash content: it could be also used cement plants or agricultural soil amendment.

 \checkmark As an alternative to reform the pyrolysis volatiles increasing 1

6. PRODUCTS CHARACTERIZATION GAS FRACTION Non Catalytic



6. PRODUCTS CHARACTERIZATION

100.001

Cracking reactor temperature [°C]

800.Dol

0

ŝ

100

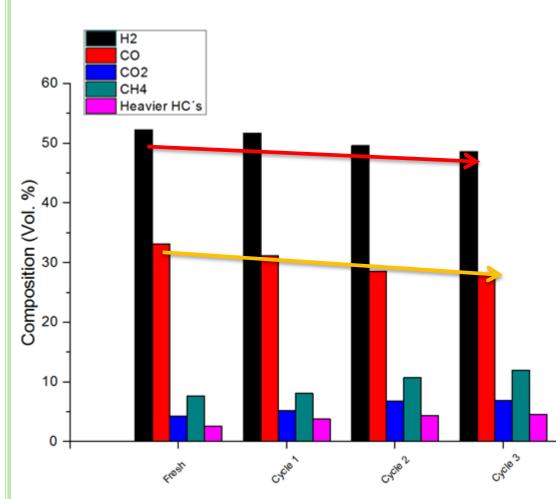
Catalytic tests

 \Box Greater composition of H_2 and CO as temperature increases

\Box H₂ production:

Increases up to 40.6 vol% and 44.5 vol% at 700 $^{\rm o}{\rm C}$ and 800 $^{\rm o}{\rm C}$

A half of the gas stream can be considered $\rm H_2$ (52.3 vol. %) at 900°C


 \Box CO: a crescent tendency

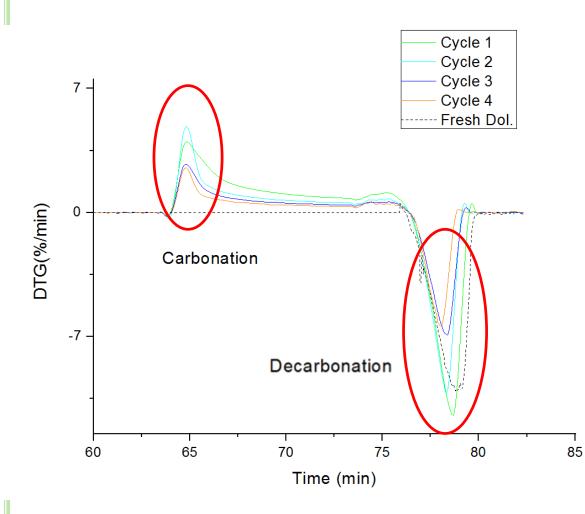
□ 900°C:

 $82\,$ vol% of the total gas stream consisted of CO and $\rm H_2$

A remarkably environmental issue achievement could be addressed to the reduction of CO_2 and CH_4 with the temperature

7. Study of the life time of the catalyst Gas fraction

 \Box H₂ and CO only suffered a slight reduction (close to 5%)

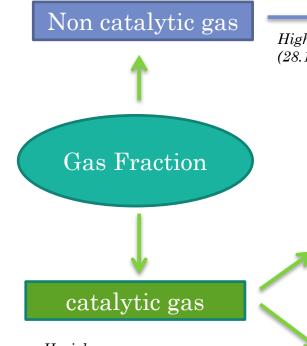

 $\hfill\square$ ${\rm CO}_2$ was maintained at low levels,

 \Box CH₄ kept in the same range, approximately.

□ H₂/CO ratio kept in the same range (1.7)

Not remarkable differences in gas composition and HHV: Only a small negative effect in the process

7. Study of the life time of the catalyst Catalyst


✓ Carbonation capacity of the catalysts kept at the same range approximately after both first and second cycles.

 \checkmark After cycles 3 and 4, carbonation capacity of the catalysts was slightly reduced.

✓ The **sintering phenomena** occurred during the regeneration process

 \checkmark It would be necessary to incorporate both a purge and an inlet of catalyst in order to keep on the stability of the catalytic process.

8. NON CONDENSABLE GAS APPLICATION

H₂ rich gas More environmental-friendly

Higher heating value (28.1 MJ/kg) ✓ Industrial and domestic boilers

 \checkmark Gas engines

✓ Gas turbines

✓ Steam boilers (minimization in cost on gas scrubbing devices)

 ✓ Production of methanol, hydrocarbons, ammonia

✓ Transportation liquid fuels from Fischer-Tropsch synthesis

 \checkmark potential source in the production of $\rm H_2$

8. CONCLUSIONS

- The pyrolysis + cracking process of MSW seems a good alternative for the production of value-added products, specially a valuable gas fraction that can be used directly as a fuel or as a source of different valuable products.
- The use of an inexpensive and worldwide available catalyst such as calcined dolomite favors the formation of H_2 and CO.
- Particularly, reaching temperatures of 900 °C in the cracking reactor provides a syngas where more than 80 vol% consists of CO and H_2 with a heating value of 16 MJ/Nm³.
- The process could be considered relative inexpensive due to the potential of the obtained char to contribute to the necessary energy requirement of the process.

THANK YOU FOR YOUR ATTENTION!!

Conversion of municipal solid wastes into value-added products as a green alternative in biomass and waste management

Alberto Veses Roda

a.veses@icb.csic.es

Zaragoza, Spain

