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FIRESIDE CORROSION:
Deposition on Superheater / Reheater Tubing
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FIRESIDE CORROSION:
High Temperature Corrosion Mechanism
A
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CORROSIVE DEPOSITS: DEPOSIT INSTABILITY:
» Sulphate deposits (pyrosulphates, alkali Vapour condensation dewpoints
iron trisulphates, mixed sulphates) Insufficient SO; available to stabilise
« Chloride deposits some phases
« Sulphates-Chlorides-Carbonates (mixed) Other phases more stable with
temperature change
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EXISTING CORROSION MODELS

1. Borio Index: The index value was derived from a nomograph defining factors including
acid-soluble K,O, Na,O, CaO and MgO, and Fe,O,. The coal corrosivity index derived was
of the range 0 - 22 with increasing index denoting increased corrosion.

2. Raask Index: i.e. < 0.5 wt % (Na + K) denotes low coal corrosivity; and > 1.0 wt % (Na +
K) denotes high coal corrosivity.

nm

3. PE-8 model: Corrosion rate (ﬁ) = AB(Tg/G)m[%]” (%Cl — D)
4. Modified PE-8 model:

Corrosion rate (nm/hr) = exp[(r/T,,) + S(%C?"alloy) + t(Tg — Tm) +u+ V(%leuez)]
5. Laboratory Test Equation:

Corrosion rate (nm/hr)

= exp[(a/Ty) + b + c(HCL) + d(S0,) + e(Na + K) gep% + f(%Saep) + 9(%Clyep )]

References: Borio et al., 1968M1; Clapp, 199112; James et al., 2007[34 51; Lant et al., 2010[341; Wright and
Shingledecker, 2015123
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MODEL DEVELOPMENT: Principal Component
Analysis / Partial Least Squares

IhputData .- y Transformgd Data (feature weights)

PCA is employed to
reduce the
dimensionality of a
set of variables while
retaining maximum
variance
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the dependent variable
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Reference: PCA illustration - Transformation of © Cranfield University
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MODEL STRUCTURE

" Arrhenius Equation:
' Activation Energy

!

_Ea

Rate Constant——> K — Ae RT <—— Kelvin Temperature

|

Pre-exponential Factor Gas Constant

' Taking the natural logarithm on both sides gives: InK =In A — %
Constant Fuel composition (wt %)
!_1_\ {_L_\
Iny = In( ﬁo) + ﬁlxli + ﬁZxZi e B kakl- s T E;
Corrosion rate 1000/Metal  Ajioy composition Residual error
(um.(khr)?) temperature , T (Wt %)
(1000/K)
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PRINCIPAL COMPONENT ANALYSIS

Standardised
regression coefficients
transformed to
original
(unstandardized) form

Variables with high
loadings on selected
PCs added to the
regression model

Input dataset mean
centered and
standardised

Variance (eigenvalue)

Principal component
regression using
selected PCs

and weight vector
(eigenvector)
computed from
correlation matrix

Prediction model

Principal components
with significant Original variables
eigenvalues selected - mapped onto the new
via a selection coordinated space

criterion
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PARTIAL LEAST SQUARES

PLS weights
PLS components extracted to build
selected via cross the model and
validation used later for
variable selection

Variable selection

- is carried out by .
Prediction model introducing a PLSR model is

generated threshold fitted to the data

(VIP Scores)

Reference (VIP scores): Mehmood et al (2012); Farres et al (2015)
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MODEL SUITE

Materials Tube Fuel
Position

Model 1

Model 2
Model 3

Model 4

Model 5

Model 6

Model 7
Model 8
Model 9
Model 10

Model 11

Model 12

14

Austenitic Fe based

Ferritic

Austenitic Fe based

Ni based alloys

Ferritic

Coatings and claddings
Austenitic Fe based

Ni based alloys

Coatings and claddings

TP316, HR3C

Leading
Non-leading

Leading

Non-leading

Position not
specified

Midland and North Eastern
Region UK Coals

Midland and North Eastern
Region UK Coals

Biomass - Clean wood
pellets, waste wood and
forestry waste

US Coal — Eastern and
Western Bituminous coal

10-20% Wood/CCP, Daw
Mill Coal
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PLS — VARIABLE SELECTION FOR MODEL BUILDING

(MODEL 1, UK COAL DATA)
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PLS — VARIABLE SELECTION FOR MODEL BUILDING

(MODEL 5, UK BIOMASS DATA)
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PLS — VARIABLE SELECTION FOR MODEL BUILDING

(MODEL 9, US COAL DATA)
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PLS — VARIABLE SELECTION FOR MODEL BUILDING

(MODEL 12, UK CO-FIRING DATA)
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COMPARISON OF PREDICTED AND MEASURED
CORROSION RATES USING PLS
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CONCLUSIONS

* The analysis suggests a sulphur dominated fireside corrosion dependent on the fuel Cl and
Na levels in UK data; for biomass data (comprising mainly wood pellets), alkali sulphate
interaction with fireside corrosion dependent mainly on K, Ca and Ti; a fireside corrosion
model dependent on ClI, K, Mg, S and P in co-firing data, and the corrosion model from US
data is dependent mainly on the fuel’s sulphur content.

» Variable selection for fireside corrosion models is in line with conclusions from previous
investigations — for instance; chloride influence in UK coals.

« PLS on average produced better predictive models than PCA, and with fewer latent
variables compared to PCA. On PCA, the more latent variables (or PCs) selected, the
better the model performance; this is not the case for PLS so there is less chance of
overfitting the data.

» PCA also includes more predictor variables with negligible effects on the corrosion rate

compared to PLS
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