

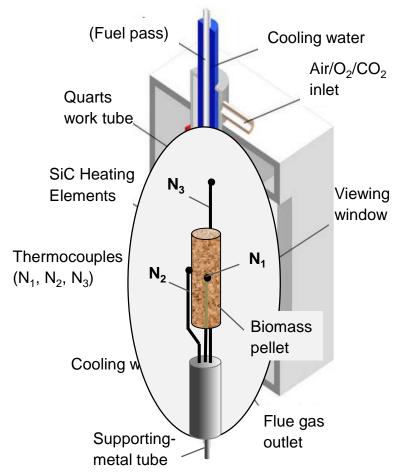
Experimental investigation of oxy-combustion behaviour of single biomass pellets using highspeed imaging and colour processing techniques

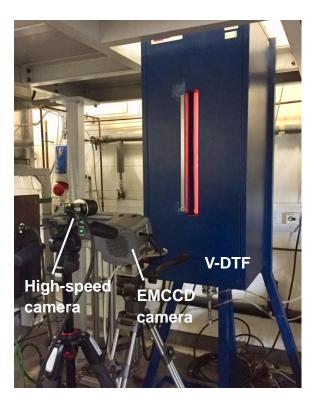
G. Lu and Md M. Hossain

School of Engineering and Digital Arts, University of Kent

Q. Gu, T. Chen, F. Sher, and H. Liu *Faculty of Engineering, University of Nottingham*

12th ECCRIA, Cardiff, 4th-7th Sept 2018


- Background
- Experimental set-up
- Test conditions
- Measurement
- Results and discussions
- Concluding remarks

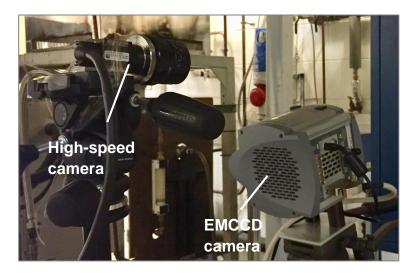

Background

- Biomass fuels have widely been accepted as renewable energy in new and retrofitted power/thermal plants (pulverised, fluidised bed, or grate chain boilers).
- Biomass fuels, however, can vary widely in properties, composition and structure, leading to drastically different 'fuel performance', particularly under oxy-combustion conditions.
- Limited work has been undertaken for the fundamental understanding of the combustion behaviours of biomass fuel under oxy-conditions.
- A combination of high-speed and spectroscopic imaging, and image processing techniques is employed to investigate the combustion behaviours of single biomass pellets in a V-DTF (Visual Drop Tube Furnace) under both air and oxy conditions.

Experimental set-up

 V-DTF- an electrically heated drop tube furnace equipped with a quartz tube@50 mm inner dia and 1400mm long, capable of maintaining gas temperature up to 1050 °C.

Experimental set-up


Key features of imaging systems

- A high-speed camera (IDS UI-3130CP Rev. 2)- acquiring videos of burning biomass pellets.
- An EMCCD camera (Andor iXonEM+ 897)- acquiring videos of spectral intensities of alkali metals (Na and K) during the biomass pellets combustion.

<u>High-speed camera</u> Sensor type: CMOS, RGB Frame rate: 575 fps@800(H)x600(V), up to 900fps with a reduced image resolution Resolution: 0.48 MPix Interface: USB 3

EMCCD camera

Spectral range: UV to near IR Multiplication factor: 1000 Cooling temp: -85°C Dark current: <0.001 e-/pix/s Image resolution: 512 x 512 pixels

Fuel properties and test conditions

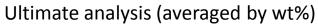
Five typical biomass pellets

Proximate analysis (wt%, as received)

Biomass	Moisture	Ash	Volatile matter	Fixed carbon	
Miscanthus	4.42	3.67	75.91	16.00	
Peanut	7.73	2.78	68.50	20.99	
Straw	4.00	7.57	73.96	14.47	
T wood	6.40	1.97	72.90	18.73	
Wood	7.32	0.35	76.96	15.37	

Miscanthus

Peanut

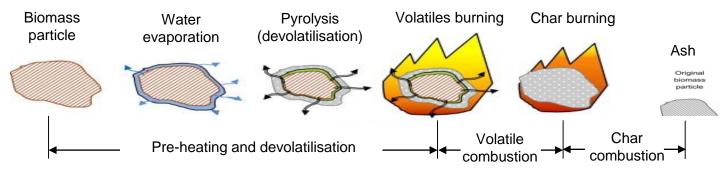

Strew

Wood

Torrefied wood

Biomass	С	Ν		
Miscanthus	45.55	6.13	0.66	
Peanut	46.69	6.42	1.38	
Straw	44.03	5.93	0.67	
T wood	49.32	6.04	0.51	
Wood	46.68	6.44	0.24	

Note: only results from Miscanthus are presented.


Fuel properties and test conditions

 The pellets of tested biomass burnt under the following conditions for pre-set temperatures of 800°C and 900°C which replicate the working temperatures of a typical biomass-fired fluidised bed boiler (fixed bed).

Condition	O ₂ (I/min)	CO ₂ (l/m)				
Air (l/min)	10					
O ₂ @21%	2.1	7.9				
O ₂ @25%	2.5	7.5				
O ₂ @30%	3.0	7.0				

• The size and mass of all the pellets were measured before the tests. Their volume and density were then computed and used to normalise the results for fair comparisons.

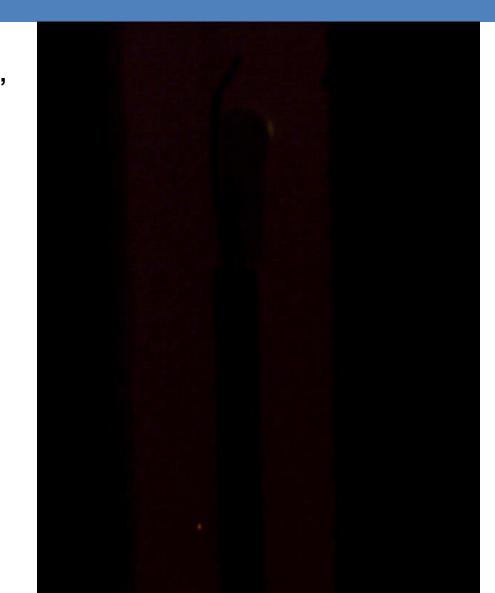
Measurement

Phases of biomass combustion

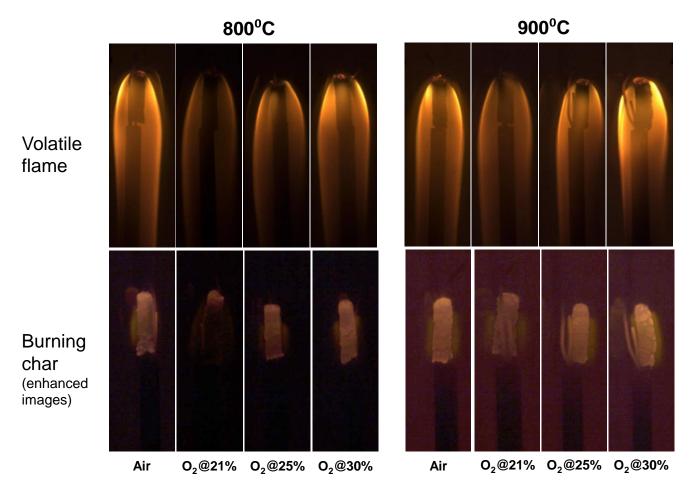
- Volatile combustion
 - Size and Shape of flame
 - Ignition time
 - Burning velocity/rate
 - Temperature and its distribution
 - Spectral intensity of radicals (Alkali metals such as Na and K)

- Char combustion
 - Burning velocity/rate
 - Temperature and its distribution

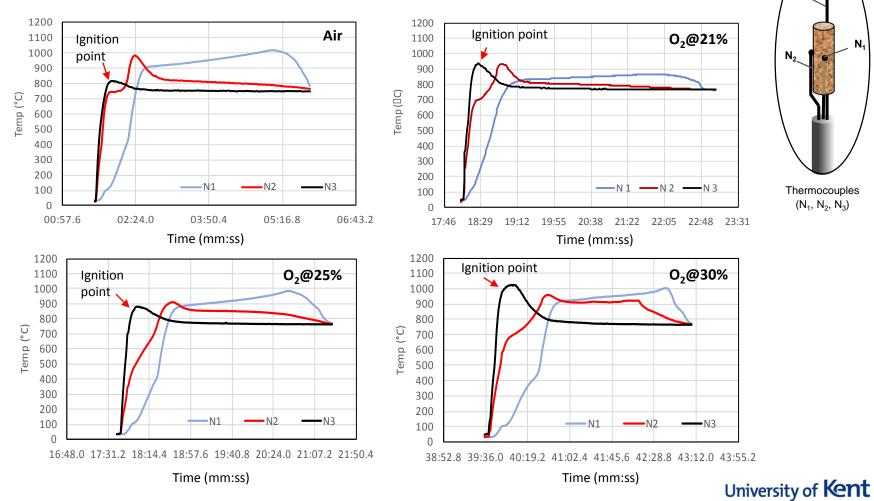
Measurement

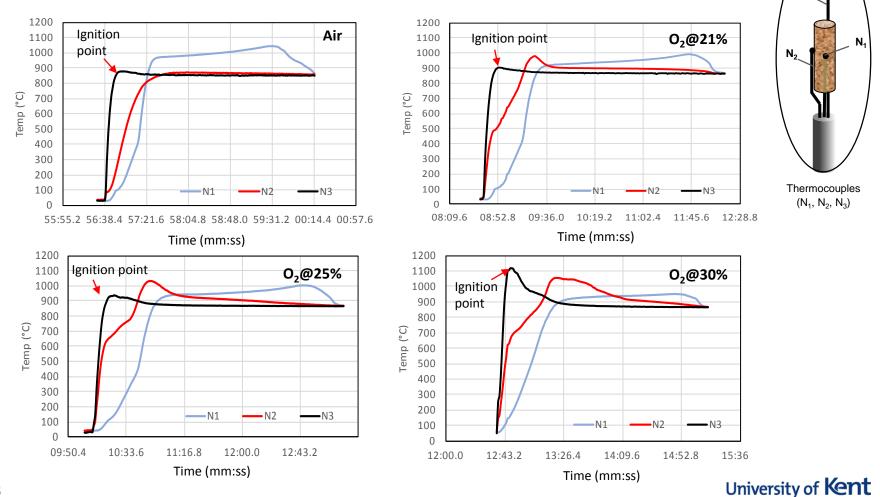

- For each test condition
 - Three samples of each biomass fuel were burnt.
 - Videos of the complete combustion process of each sample were recorded.
 - Videos of alkali metals (Na and K) emissions were also recorded by placing band-pass filters at the front of the EMCCD camera.
 - Temperatures (flame, surface and inner) of the burning pellet were also measured concurrently using the thermocouples.
- Videos are processed and the characteristic parameters of the burning pellet were defined and computed for different combustion phases.
- The combustion behaviours of the burning pellet in relation to the test condition are then quantified.

Miscanthus,


O₂@21%,

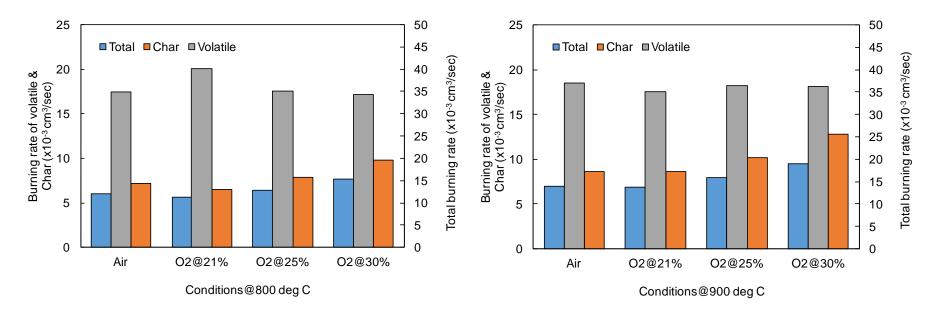
CO₂@79%


800°C


• Example flame/char images of Miscanthus pellets

 Temperature of a burning Miscanthus pellet under air and oxy combustion for the pre-set furnace temperature of 800 °C

 Temperature of a burning Miscanthus pellet under air and oxy combustion for the pre-set furnace temperature of 900 °C



Samples and burning times

(Note: only Miscanthus is included)

800 deg C						900 deg C								
				Total		Time (sec)					Total		Time (sec)	
Condition Sample	Sample	Volumn (cm3)	Density (g/cm3)	burning time taken in test	Total Combusiton	Volentile Combustion	Char Combustion	Sample	Volumn (cm3)	n Density (g/cm3)	burning time taken in test (sec)	Total Combusiton	Volentile Combustion	Char Combustion
Air	M1	1.27	0.52	242.0	240.0	38.0	202.0	M4	1.37	0.50	207.0	210.0	39.0	171.0
	M2	1.37	0.48	226.0	224.0	41.0	183.0	M5	1.45	0.55	222.0	218.0	41.0	177.0
	M3	1.45	0.52	219.0	220.0	38.0	182.0	M6	1.62	0.43	205.0	207.0	40.0	167.0
	ave	1.36	0.51	229.0	228.0	39.0	189.0	ave	1.48	0.49	211.3	211.7	40.0	171.7
02@21%	M20	1.61	0.52	289.0	265.0	38.0	227.0	M7	1.43	0.49	204.0	199.0	42.0	157.0
	M21	1.55	0.48	338.0	275.0	37.0	238.0	M8	1.50	0.52	215.0	214.0	42.0	172.0
	M22	1.46	0.53	308.0	285.0	40.0	245.0	M9	1.48	0.57	228.0	225.0	42.0	183.0
	ave	1.54	0.51	311.7	275.0	38.3	236.7	ave	1.47	0.53	215.7	212.7	42.0	170.7
02@25%	M23	1.25	0.52	199.0	200.0	38.0	162.0	M10	1.21	0.56	177.0	173.0	38.0	135.0
	M24	1.35	0.54	214.0	209.0	37.0	172.0	M11	1.47	0.51	177.0	173.0	37.0	136.0
	M25	1.28	0.52	211.0	199.0	36.0	163.0	M13	1.54	0.53	189.0	184.0	41.0	143.0
	ave	1.29	0.53	208.0	202.7	37.0	165.7	ave	1.41	0.53	181.0	176.7	38.7	138.0
O2@30%	M26	1.44	0.49	173.0	173.0	37.0	136.0	M14	1.46	0.50	147.0	145.0	36.0	109.0
	M27	1.18	0.51	168.0	160.0	37.0	123.0	M17	1.27	0.45	124.0	127.0	35.0	92.0
	M28	1.15	0.53	168.0	161.0	36.0	125.0	M19	1.26	0.52	150.0	149.0	39.0	110.0
	ave	1.26	0.51	169.7	164.7	36.7	128.0	ave	1.33	0.49	140.3	140.3	36.7	103.7

Burning rates of Miscanthus pellets

Remarks:

- An increased O₂ flow would increased the burning rate of char and thus the total combustion rate of the biomass pellet.
- The pre-set furnace temperature has a little impact on the burning rate of volatile matters.
- Combustion behaviours of the biomass pellet under the O₂@25% oxy-condition show to be similar to that under the air combustion.

Concluding remarks

- Experiments have been carried out on a V-DTF to study the combustion behaviours of individual biomass pellets through digital imaging and image processing techniques.
- The complete combustion process of five different biomass pellets were recorded for both air and oxy conditions under the pre-set furnace temperatures of 800 °C and 900 °C.
- The phases of combustion (total, volatile and char) of each biomass pellet have been separated and the associated periods of time are determined.
- The temperatures of the burning pellet (e.g., ignition and surface) have been measured and their relationship with the combustion phases are quantified.
- Results have shown a strong correlation between the burning rate of biomass pellets and oxy flows. In particular, the burning rate of char and thus the total combustion rate increases with the O₂ flow.
- The data processing is continuing to quantify and compare the combustion behaviours of different biomass materials (e.g., colour, and spectral intensities of free radicals) for both air and oxy conditions .

Acknowledgement

UKCCSRC is acknowledged for providing a grant in aid of this research.

