

12<sup>th</sup> ECCRIA CONFERENCE

Solvent-based post-combustion capture: Process simulation, validation and scale-up

Olajide Otitoju, Eni Oko and Meihong Wang

5-7<sup>th</sup> September, 2018.

**Help Transform** Tomorrow.





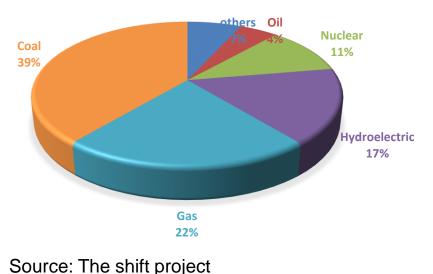


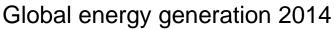
#### Introduction

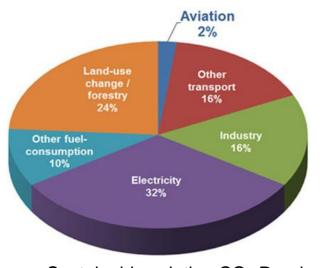
- -Background
- -Motivation
- -Aims and Objectives
- -Novel contribution

### Literature review

- –Pilot plant study
- -Model development and Process simulation
- -Scale-up
- Proposed method for estimating column diameter
- Pilot plant data for model validation
- Model development and validation
- Model scale-up
- conclusions




## Background

- > Fossil fuels play vital roles in meeting the increasing global energy demand.
- Fossil fuel combustion for electricity generation in power plants is responsible for largest emission of CO<sub>2</sub>







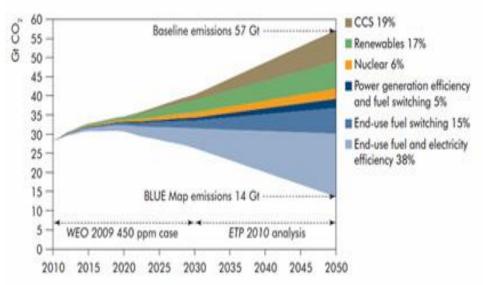
### Global CO<sub>2</sub> Emission by sector

**INTRODUCTION** 

Source: Sustainable aviation CO<sub>2</sub> Roadmap








## INTRODUCTION

### Background

- Carbon capture and storage (CCS) has been identified as a technology to reduce CO2 emission from the power plant.
  - CCS to be responsible for one-fifth (19%) reduction in global  $CO_2$  emission by 2050.
- Post-combustion Capture plant has the most potential to be commercialized in the power sector.
- Chemical absorption is the most preferred technology to capture carbon from fossil fuel power plant (Lawal et al. 2012)

Monoethanolamine (MEA) are the most commonly used.



Key technologies for  $CO_2$  emissions reduction 2010—2050 (IEA, 2010)







## Motivation

- Solvent-based PCC process have been studied through Process modelling and simulation.
   Models are validated using pilot plant data
- > Validated models are often scaled from pilot plant scale to commercial scale (To enable the study of large scale plants)
- Most of the commercial-scale design are based on assuming a value for the pressure drop in the packed column (to determine the columns diameter)
- > However, the accuracy of this scale-up procedure has not been demonstrated
- ➤ This research is focussed on developing an alternative method for the scale-up of the solvent-based PCC process using simple empirical correlation.



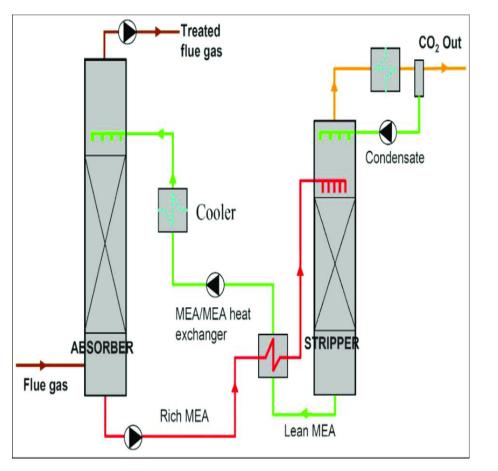




### Chemical SOLVENT-BASED PCC PROCESS and Biological DESCRIPTION

Engineering

### Solvent-based PCC process description


The Absorber

- CO<sub>2</sub> in the flue gas is absorbed by the amine solvent
- Treated gas leaves through the absorber top
- The amine solvent rich in CO<sub>2</sub> leaves through the absorber bottom to the stripper

The stripper

- The rich amine solvent is regenerated in the stripper to produce the original solvent and  $CO_2$ .
- The CO2-rich stream leaves through the top of the stripper.
- The lean solvent is returned to the absorber





Schematic of the  $CO_2$  removal process. Gervasi et al. (2014)





### AIM, OBJECTIVES AND NOVEL CONTRIBUTIONS

### <u>Aim</u>

To carry out simulation, validation and scale-up studies of the solvent-based PCC process. The aim will be achieved with the following objectives.

### **Objectives**

- Model development of the Solvent-based PCC plant.
- > model validation with experimental data from the chosen pilot plants.
- ➢ Model scale-up of the pilot plant.

### Novel Contribution

Application of an alternative scale-up methodology for Solvent-based PCC plant using the flooding velocity as basis for calculation.

• Offers the advantage of estimating the column diameter without the GPDC chart and assumed pressure drop.







## LITERATURE REVIEW

### **Pilot plants**

Laboratory of thermodynamics, University of Kaiserslautern

• Experimental studies on effects of operational variables on process behaviour, test of different packing types Main specifications

|                   | diameter(m) | packing height(m) | packing type   |
|-------------------|-------------|-------------------|----------------|
| Absorber          | 0.125       | 4.25              | Mellapak 250Y  |
| Stripper          | 0.125       | 0.84 m            | Mellapak 250 Y |
| Water wash column | 0.125       | 0.42              | Mellapak 250Y  |

Pilot-scale Advance Capture Technology (PACT), University of Sheffield

• Impact of different CO<sub>2</sub> concentrations on the post-combustion CO<sub>2</sub> capture process with MEA Main specifications

|                       | diameter (m) | packing height (m) | packing type |
|-----------------------|--------------|--------------------|--------------|
| Absorber and Desorber | 0.303        | 6.0                | IMTP 40      |
| Water wash column     | 0.303        | 1.2 m              | IMTP 40      |

Separation research programme, University of Texas, Austin

• Separation performance and mass transfer of the absorber and stripper respectively

|                       | diameter(m) | packing height(m) | packing type     |
|-----------------------|-------------|-------------------|------------------|
| Absorber and stripper | 0.427       | 6.1               | Flexipac/IMTP 40 |
| No washing section.   |             |                   |                  |







## LITERATURE REVIEW

### Modelling and simulation of the PCC process

- Process modelling and simulation of the solvent-based CO<sub>2</sub> capture process have been carried out by several researchers at different levels of complexity.
- The two approaches commonly used to model the process are:
  - Equilibrium-based model approach
  - Rate-based model approach
    - More appropriate for modelling the PCC process
- The CO<sub>2</sub>capture plant has been studied using
  - Dynamic simulation
  - Steady state simulation







## LITERATURE REVIEW

and Biological Engineering

Chemical

#### Dynamic and steady state modelling of the solvent-based PCC

| Reference                  | Simulation tool                | Model complexity                                                                                                | Model validation                                                                                | Description and model application                                                                                                                                                                                                                          |
|----------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lawal et al.<br>(2010)     | gPROMS and<br>Aspen properties | Rate based mass transfer and<br>chemical equilibrium, model<br>scale-up and integration to<br>power plant model | Steady state validation with<br>data from the SRP pilot<br>plant (Dugas, 2006)                  | <ul> <li>Power plant model development<br/>integrated with full-scale PCC CO<sub>2</sub><br/>capture model.</li> <li>Investigated plant performance with<br/>different <ul> <li>absorber column heights</li> <li>MEA concentrations</li> </ul> </li> </ul> |
| Akesson et al.<br>(2012)   | Dymola/Modelica                | Rate based mass transfer and chemical equilibrium                                                               | Dynamic validation with<br>data from the Esbjerg pilot<br>plant (Faber et al., 2011)            | Dynamic model validation and model reduction for demonstration of NMPC.                                                                                                                                                                                    |
| Nittaya et al.<br>(2014)   | gPROMS                         | Rate based mass transfer and enhancement factor.                                                                | Steady state validation using<br>data from the SRP pilot<br>plant (Dugas, 2006)                 | <ul> <li>Process scale-up and investigation of effects of changes in</li> <li>Absorber height</li> <li>Flue gas flow rate</li> <li>CO<sub>2</sub> capture level</li> </ul>                                                                                 |
| Enaasen et al.<br>(2014)   | K-Spice                        | Rate based mass transfer and enhancement factor                                                                 | Validation with data from<br>the Brindisi CO <sub>2</sub> pilot plant                           | Dynamic model validation                                                                                                                                                                                                                                   |
| Canepa et al.<br>(2013)    | Aspen Plus                     | Rate based mass transfer with kinetic reactions                                                                 | Steady state validation with data from SRP pilot plant                                          | Model scale-up, integration to full scale<br>PCC to investigate effect of EGR on<br>energy penalty.                                                                                                                                                        |
| Agbonghae et al.<br>(2014) | Aspen Plus                     | Rate based mass transfer with kinetic reactions                                                                 | Steady state validation with<br>data from the Kaiserslautern<br>pilot plant (Notz et al., 2012) | Model scale-up to commercial scale with techno-economic assessment.                                                                                                                                                                                        |







## LITERATURE REVIEW

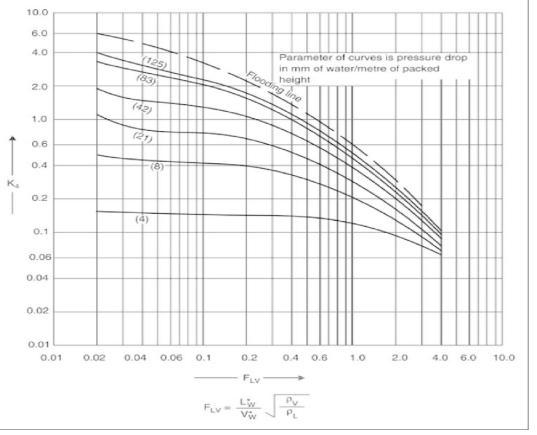
SCALE-UP

Column diameter required for absorption operation at large-scale for the solvent-based PCC has often been estimated using the GPDC chart and following these steps:

 $\succ$  Estimation of the required solvent (F<sub>lean</sub>) for the absorption operation.

$$F_{\text{lean}} = \frac{F_{FG} x_{CO2} \varphi_{CO2}}{100Z(\alpha_{Rich} - \alpha_{Lean})} \left( \frac{M_{Amine}}{44.009} \left\{ 1 + \frac{1 - \omega_{Amine}}{\omega_{Amine}} \right\} + Z\alpha_{Lean} \right) \dots (1) \quad (\text{Agbonghae et al, 2014})$$

 $F_{lean}$  = Mass flow rate lean solvent,  $F_{FG}$  =mass flow rate of flue gas,  $M_{Amine}$  = molar mass of the amine


 $X_{CO_2}$  = mass fraction of CO2 in flue gas,  $\varphi_{CO2}$  = percentage of CO2 recovered from the flue gas Z=number of equivalent/mole amine=1 for MEA  $\alpha_{Rich} - \alpha_{Lean}$ =Rich and lean amine CO2 loading.

- Calculation of the flow parameter (abscissa of the GPDC)
- Estimation of the load parameter from the GPDC chart using the calculated flow parameter and the assumed pressure drop.
- > Calculation of the column vapour mass flow rate per unit cross-sectional area
  - from which the total area is obtained.









# $F_{LV} = \frac{L_{W}^{*}}{V_{W}^{*}} \sqrt{\frac{\rho_{V}}{\rho_{L}}}$ The GPDC chart (Sinnot, 2005)

## LITERATURE REVIEW

### SCALE-UP

- ➢ For packed column, Pressure drop of 15-50 mmH₂O/m of packing was recommended by Sinnot (2005)
  - For good liquid and gas distribution
  - To avoid flooding
- ➢ For most scale-up work available in literature pressure drops of 20.83 and 42 mmH₂O/m packing are mostly adopted.
  - Due to the foaming nature of the amine system
  - Easily read off from the GPDC charts.







### Chemical and Biological

## LITERATURE REVIEW

Engineering

Studies from literature that Adopted the GPDC scale-up approach

|                           | Lawal et al.      | Canepa et al. | Biliyok and Yeung | Agbonghae et al.  | Luo and Wang   |
|---------------------------|-------------------|---------------|-------------------|-------------------|----------------|
|                           | (2012)            | (2012)        | (2013)            | (2014)            | (2016)         |
| $CO_2$ capture rate (%)   | 90                | 90            | 90                | 90                | 90             |
| Power plant size $(MW_e)$ | 500               | 250           | 440               | 673               | 250            |
| Type of power plant       | Subcritical coal- | Gas-fired     | Gas-fired NGCC    | Subcritical coal- | Gas-fired CCGT |
|                           | fired             | CCGT          |                   | fired             |                |
| Lean loading (mol/mol)    | 0.290             | 0.303         | 0.234             | 0.200             | 0.300          |
| Rich loading (mol/mol)    | 0.470             | 0.472         | 0.494             | 0.506             | 0.456          |
| L/G ratio (kg/kg)         | 5.300             | 2.020         | 1.040             | 2.930             | 1.580          |
| Absorber                  |                   |               |                   |                   |                |
| Number                    | 2                 | 2             | 4                 | 2                 | 1              |
| Diameter (m)              | 9                 | 9.5           | 10                | 16.67             | 14             |
| Packing height (m)        | 27                | 30            | 15                | 23.04             | 15             |
| Packing type (m)          | IMTP40            | IMTP40        | Mellapak 250X     | Mellapak 250Y     | Mellapak250Y   |
| Stripper                  |                   |               |                   |                   |                |
| Number                    | 1                 | 1             | 1                 | 1                 | 1              |
| Diameter (m)              | 9                 | 8.2           | 9                 | 14.25             | 6              |
| Packing height (m)        | -                 | 30            | 15                | 25.62             | 9.4            |
| Packing type (m)          | Flexipac 1Y       | Flexipac 1Y   | Mellapak 250X     | Mellapak 250Y     | Mellapak 250Y  |
| Pressure drop             | 42                | 42            | 42                | 20.83             | 20.83          |
| $(mmH_2O/m packing)$      |                   |               |                   |                   |                |







Based on the correlation for predicting flood point and pressure drop in columns presented by Kister and Gill (1991)

• An expression of the form below can be written for the relationship between the abscissa and the ordinate

$$CP = A\log^2(Flv) + B\log(Flv) + c$$
 (1) (Kister and Gill, 1991)

where

Flv is the flow parameter given by  $F_{lv} = \frac{L}{G} \sqrt{\frac{\rho_L}{\rho_G}}$  (2) (Sherwood, et al 1938)

And CP, the capacity parameter is given as;

$$CP = \sqrt{U_{G,fl}^2 \left(\frac{\rho_G}{\rho_L - \rho_G}\right) \left(\frac{\mu_L}{\rho_L}\right)^{0.1} F_P}$$
(3) (Piché, 2001)

Where  $U_{G,fl}$  is the flooding velocity,  $\rho_G$  and  $\rho_L$  are the gas and liquid density,  $\mu_L$  is the liquid viscosity and  $F_p$  is the packing factor.







The pressure drop at which incipient flooding occurs in the column can be determined using the Kiste Gill equation given as;

$$\Delta P_{fl} = 0.115 F_P^{0.7} \text{ (in-water / ft of packing)}$$
(4)
(Kister and Gill, 1991)

- > Equation (4) is applicable when  $10 \le F_P \le 100$  (ft<sup>-1</sup>) (Piché et al, 2001)
- At  $F_p > 60$  ft<sup>-1</sup> pressure drop prediction accuracy decreases (Kister and Gill, 1991 and Perry, 1999).

The constants A, B and C in equation (1) are functions of the flooding pressure drop and are given by following equations.

- $A = 0.0665 \ln(\Delta P_{fl}) 0.1106$   $0.5 \le \Delta P_{fl} \le 5.0 \text{ in H20/ft}$
- $B = -0.252 \ln(\Delta P_{fl}) 0.8918$   $0.5 \le \Delta P_{fl} \le 1.0 \text{ in H20/ft}$
- $\mathsf{B}=-0.8900 \qquad \qquad 1.0 \le \Delta \mathsf{P}_{\mathrm{fl}} \le \mathrm{inH20/ft}$

 $C = 0.1221 \ln(\Delta P_{fl}) + 0.714$   $0.5 \le \Delta P_{fl} \le 5.0$  in H20/ft



(Piché et al, 2001)



Equation 1 can be re-written in the form shown below;

$$CP = \log[\log(F_{l\nu})^A] + \log(F_{l\nu})^B + C$$
(5)

By combining equations 2, 3, 4 and 5 and re-arranging for the flooding velocity, we arrived at the following equation;

$$U_{G,fl} = \left(\frac{\rho_L - \rho_G}{\rho_G}\right)^{0.5} \left(\frac{\rho_L}{\mu_L}\right)^{0.05} F_P^{-0.5} \log\left[\log\left(\frac{L}{G}\sqrt{\frac{\rho_L}{\rho_G}}\right)^A\right] + \log\left(\frac{L}{G}\sqrt{\frac{\rho_L}{\rho_G}}\right)^B + C \qquad (6)$$

Equation (6) can be used to estimate the flooding velocity in a packed column once the liquid and gas flowrates as well as the physical properties such as the gas and liquid densities and viscosity are known.

Packed columns are usually designed to operate within 60-80% of the flood point velocity (Perry, 1999).







Assuming a value of 70 % of flooding velocity, the operating velocity in the column can be determine by multiplying the flooding velocity by 0.7

$$U_{oprt} = 0.7 U_{G.fl} \tag{7}$$

The diameter ( $D_{oprt}$ ) required by a column operating at 70% of flooding velocity is given as;

$$D_{oprt} = \sqrt{\frac{4G}{\pi U_{oprt}\rho_G}} \tag{8}$$

- ➢ To test the accuracy of equations 6-8 above, they were used to estimate the diameter of packed absorber columns for different cases previously reported in the literature.
- $\succ$  The details of the various cases and the results obtained are shown in tables below.





| The<br>University<br>Of<br>Sheffield.                      | Chemical<br>and Biological<br>Engineering |                               | and Biological CASES REPORTED FROM LITER |               |                               |                                 |  |
|------------------------------------------------------------|-------------------------------------------|-------------------------------|------------------------------------------|---------------|-------------------------------|---------------------------------|--|
|                                                            |                                           | Liquid                        |                                          | Gas           |                               |                                 |  |
|                                                            | Flow<br>rate                              | Density                       | viscosity                                | Flow rate     | Density                       | Reference                       |  |
| Plants                                                     | L<br>(Ib/sec)                             | $ ho_L$ (Ib/ft <sup>3</sup> ) | $\mu_L$ (Ib/ft.s)                        | G<br>(Ib/sec) | $ ho_G$ (Ib/ft <sup>3</sup> ) |                                 |  |
| University of<br>Kaiserslautern pilot plant                | 0.123                                     | 65.84                         | 0.001064                                 | 0.044         | 0.0661                        | (Notz, et al, 2012)             |  |
| 250 (MW <sub>e</sub> ) gas-fired<br>NGCC power plant       | 1352.40                                   | 63.4                          | 0.002386                                 | 784.80        | 0.0682                        | (Canepa et al.,<br>2013)        |  |
| 300 MW <sub>e</sub> coal-fired power plant                 | 1301.02                                   | 66.80                         | 0.001164                                 | 778.89        | 0.0761                        | (Khalilpour and<br>Abbas, 2011) |  |
| 400 MW <sub>e</sub> gas-fired<br>NGCC power plant          | 1316.84                                   | 65.35                         | 0.001165                                 | 1371.72       | 0.0795                        | (Agbonghae et al., 2014)        |  |
| 694 MW <sub>e</sub> sub-critical<br>coal-fired power plant | 5755.75                                   | 67.05                         | 0.001050                                 | 1967.78       | 0.092024                      | (Agbonghae et al., 2014)        |  |
| 827 MW <sub>e</sub> sub-critical coal-fired power plant    | 5511.14                                   | 67.06                         | 0.004210                                 | 2055.63       | 0.089069                      | (Agbonghae et al., 2014)        |  |



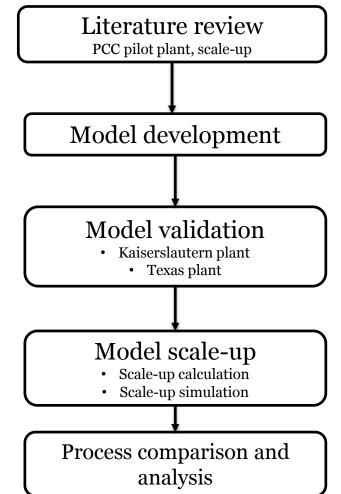






|                                                                    | Packi                  | ng                  | Results                  |                         |                   |                     |           |            |          |
|--------------------------------------------------------------------|------------------------|---------------------|--------------------------|-------------------------|-------------------|---------------------|-----------|------------|----------|
|                                                                    | Туре                   | Factor              | Pressure                 | Flooding                | Operating         | Estimated           | Estimated | Reported   | Relative |
|                                                                    |                        |                     | drop at                  | velocity                | velocity          | diameter            | diameter  | diameter   | error    |
|                                                                    |                        |                     | flooding                 |                         |                   |                     |           |            |          |
| Plants                                                             |                        | (ft <sup>-1</sup> ) | $\Delta P_{\rm fl}$ (in- | $U_{G,fl}(\text{ft/s})$ | $U_{oprt}$ (ft/s) | D <sub>e</sub> (ft) | $D_e(m)$  | $D_{a}(m)$ | %Rel.    |
|                                                                    |                        |                     | $H_2O/ft)$               |                         | -                 |                     |           |            | error    |
| pilot plant                                                        | Mellapak<br>250 Y      | 28.099              | 1.1879                   | 7.164                   | 5.015             | 0.411               | 0.125     | 0.125      | 0.00     |
| 250 (MW <sub>e</sub> ) gas-<br>fired NGCC                          | IMTP 40                | 24                  | 1.0638                   | 9.896                   | 6.927             | 46.00               | 14.00     | 14.00      | 0.00     |
| power plant<br>300 MW <sub>e</sub> coal-<br>fired power<br>plant   | Ceramic<br>Berl-saddle | 45                  | 1.65113                  | 6.65                    | 4.65              | 52.90               | 16.12     | 15.00      | 7.46     |
| 400 MW <sub>e</sub> gas-<br>fired NGCC<br>power plant              | Mellapak<br>250 Y      | 20.11               | 0.934                    | 13.54                   | 9.48              | 50.91               | 15.52     | 16.92      | 8.27     |
| 694 MW <sub>e</sub> sub-<br>critical coal-<br>fired power<br>plant | Mellapak<br>250 Y      | 20.11               | 0.934                    | 6.24                    | 4.36              | 78.96               | 24.07     | 23.08      | 4.28     |
| 827 MW <sub>e</sub> sub-<br>critical coal-<br>fired power<br>plant | Mellapak<br>250 Y      | 20.11               | 0.934                    | 6.499                   | 4.54              | 80.05               | 24.40     | 23.91      | 2.04     |








### MODEL DEVELOPMENT

Project execution plan

- The absorber and the stripper columns of the pilot plants were developed using a detailed rate-based (RADFRAC) model in Aspen Plus.
- For the Kaiserslautern pilot plants, the eNRTL is selected for the liquid phase properties and the PC-SAFT equation of state for the vapour phase properties.
- ➢ For the Texas pilot plant, eNRTL physical property method was used for the liquid phase and the Redlich-Kwong Equation of state (EOS) was used for the vapour phase.
- Correlations for transport properties are included in the model (such as the mass transfer coefficient, heat transfer coefficient, interfacial area, liquid hold up and pressure drop).









| Plants main specifications              | Kaiserslautern | Texas        |
|-----------------------------------------|----------------|--------------|
| CO <sub>2</sub> content in the flue gas | 3-14           | 15.2-18.0    |
| (mol%)                                  |                |              |
| Flue gas flow rate                      | 30-100         | 395-990      |
|                                         | (kg/h)         | (kg/h)       |
| Solvent flow rate                       | 20-350         | 849.6-6692.4 |
|                                         | (kg/h)         | (kg/h)       |
| Absorber                                |                |              |
| Diameter (m)                            | 0.125          | 0.427        |
| Height of packing (m)                   | 4.2            | 6.1          |
| Packing type                            | Mellapak 250Y  | IMTP 40      |
| Operating                               | Atmospheric    | Atmospheric  |
| pressures (bar)                         | pressure       | pressure     |
| Regenerator                             |                |              |
| Diameter (m)                            | 0.125          | 0.427        |
| Height of packing (m)                   | 2.52           | 6.1          |
| Packing type                            | Mellapak 250 Y | Flexipac 1 Y |
| Operating pressures (bar)               | 1-2.5          | 1.6          |

### PILOT PLANTS DATA

- For the Kaiserslautern pilot plant, two sets of experiments from Notz et al.
   (2012) were chosen for model validation purposes. These are:
  - Experiments A15-A19 involving low CO<sub>2</sub> concentration in the flue gas
  - Experiments A28—A33 involving high CO<sub>2</sub> concentrations in the flue gas.
- For the Texas pilot plant, three experiments from Dugas (2006) were chosen for model validation purposes, these are cases 28, 32 and 47.
- Process steady state models were simulated in Aspen plus<sup>®</sup>.





## MODEL VALIDATION

Model validation for the Kaiserslautern pilot plant (A15-A19)

|     |       | Rich loading (mol<br>CO <sub>2</sub> /Mol MEA) |                      | CO <sub>2</sub> Capture (Kg/h) |       | -                 | ic duty<br>gCO <sub>2</sub> ) |       |                   |
|-----|-------|------------------------------------------------|----------------------|--------------------------------|-------|-------------------|-------------------------------|-------|-------------------|
|     | Exp.  | Model                                          | Rel.<br>error<br>(%) | Exp.                           | Model | Rel.<br>error (%) | Exp.                          | Model | Rel. error<br>(%) |
| A15 | 0.359 | 0.357                                          | 0.55                 | 6.34                           | 6.31  | 0.47              | 5.81                          | 5.73  | 1.37              |
| A16 | 0.414 | 0.411                                          | 0.72                 | 6.37                           | 6.50  | 2.04              | 7.38                          | 7.36  | 0.27              |
| A17 | 0.371 | 0.377                                          | 1.62                 | 6.38                           | 6.37  | 0.15              | 5.47                          | 5.41  | 1.09              |
| A18 | 0.387 | 0.383                                          | 1.03                 | 6.43                           | 6.43  | 0.00              | 5.35                          | 5.27  | 1.49              |
| A19 | 0.354 | 0.343                                          | 3.11                 | 6.43                           | 6.41  | 0.31              | 6.27                          | 6.02  | 3.98              |







## MODEL VALIDATION

Model validation for the Kaiserslautern pilot plant (A28-A33)

| Cases | Rich loa | ding (mol<br>MEA) | CO <sub>2</sub> /mol | CO <sub>2</sub> capture (kg/h) |       | g/h)              | Specific | duty (MJ | /kg CO <sub>2</sub> ) |
|-------|----------|-------------------|----------------------|--------------------------------|-------|-------------------|----------|----------|-----------------------|
|       | Exp.     | Model             | Rel. error<br>(%)    | Exp.                           | Model | Rel. error<br>(%) | Exp.     | Model    | Rel. error<br>(%)     |
| A28   | 0.470    | 0.473             | 0.63                 | 6.63                           | 6.68  | 0.75              | 3.68     | 4.00     | 8.69                  |
| A29   | 0.465    | 0.464             | 0.22                 | 6.64                           | 6.84  | 3.01              | 3.92     | 3.62     | 7.65                  |
| A30   | 0.459    | 0.452             | 1.52                 | 6.67                           | 6.50  | 2.54              | 4.38     | 4.12     | 5.93                  |
| A31   | 0.454    | 0.454             | 0.00                 | 6.71                           | 6.17  | 8.05              | 4.30     | 4.24     | 1.39                  |
| A32   | 0.449    | 0.459             | 2.23                 | 6.61                           | 6.82  | 3.18              | 4.57     | 4.62     | 1.09                  |
| A33   | 0.441    | 0.440             | 0.23                 | 6.60                           | 6.63  | 0.45              | 4.35     | 4.32     | 0.68                  |





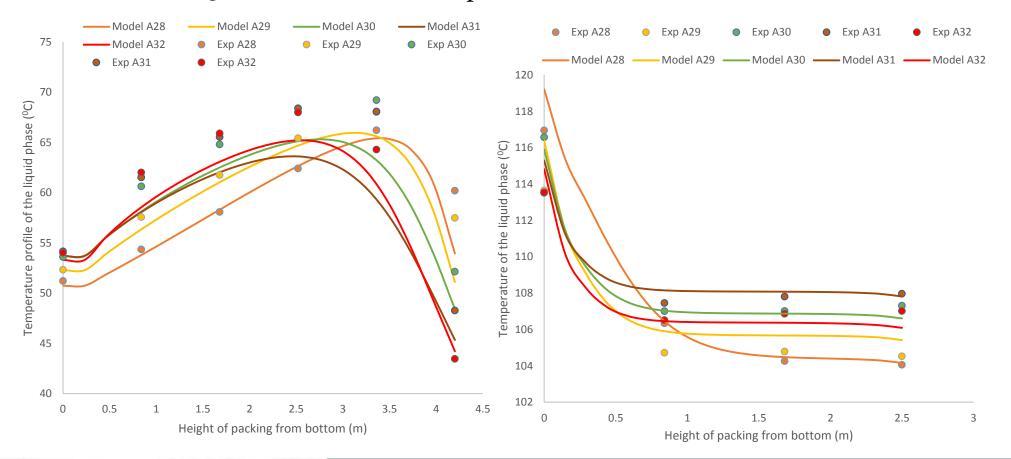


## MODEL VALIDATION

### Model Validation for pilot plant at the University of Texas (SRP)

| Cases | Rich loading (mol CO <sub>2</sub> /mol MEA) |       |                  | CO <sub>2</sub> capture level (%) |       |                   |
|-------|---------------------------------------------|-------|------------------|-----------------------------------|-------|-------------------|
|       | Exp.                                        | Model | Rel.error<br>(%) | Exp.                              | Model | Rel. error<br>(%) |
| 28    | 0.412                                       | 0.410 | 0.49             | 86                                | 85    | 1.16              |
| 32    | 0.428                                       | 0.436 | 1.87             | 95                                | 90    | 5.26              |
| 47    | 0.539                                       | 0.481 | 10.76            | 69                                | 69    | 0.00              |

•Process steady state models were simulated in Aspen plus to meet the values reported for the rich solvent  $CO_2$  loading and the  $CO_2$  capture in the pilot plant.

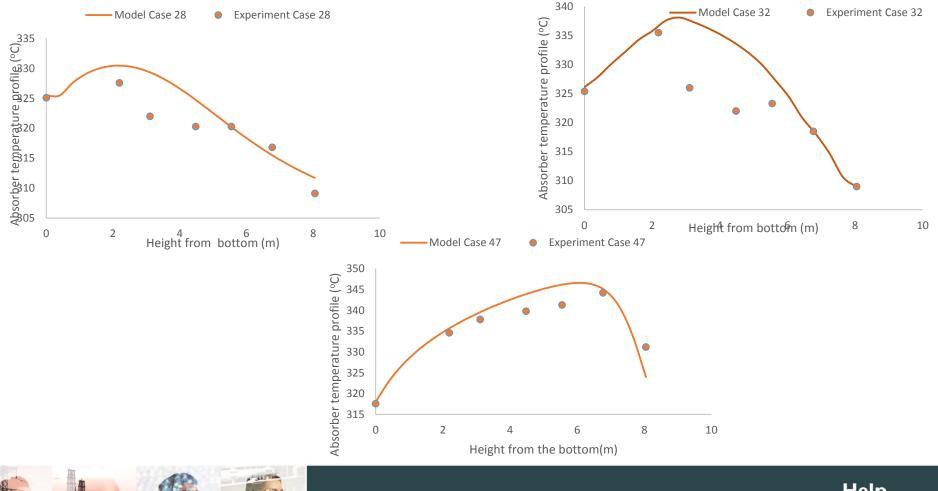







## MODEL VALIDATION

Comparison of the absorber and Stripper temperature profiles between the model and pilot plant measurement for experiments A28—A32 in the Kaiserslautern plant








# MODEL VALIDATION

Comparison of the absorber temperature profiles of the model and pilot plant measurement for the pilot plant at the University of Texas







### MODEL SCALE-UP

The method proposed in this study was used to estimate the column diameter required to process:

- the flue gas from a 450  $MW_e$  NGCC power plant (Agbonghae et al. 2014)
- The flue gas from a 750 MW<sub>e</sub> super-critical coal-fired power plant (Nittaya et al. 2014) (these plants have both been scaled from the pilot plant models using the GPDC chart method)
- ➤ The validated model for the University of Kaiserslautern pilot plant was scaled for the 450MW<sub>e</sub> NGCC case
  - Results compared to those obtained in the study by Agbonghae et al. (2014)
- > The validated model for the University of Texas pilot plant was scaled for the 750  $MW_e$  super-critical coal-fired power plant case.
  - Results compared to those obtained in the study by Nittaya et al. (2014)
- The packed bed height was estimated using similar method in literature (Lawal et al, 2012; Canepa et al, 2014; Nittaya et al, 2014)







## **MODEL SCALE-UP**

### **Input Parameters**

| Description                                | 450 MW <sub>e</sub> NGCC (gas-fired)                                                                    | 750 MW <sub>e</sub> Super-critical (coal-<br>fired)                 |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Flue gas flow rate (kg/s)                  | 725                                                                                                     | 700                                                                 |  |  |
| Composition (mass fraction)                | $CO_2$ : 0.0404; H <sub>2</sub> O: 0.0867; N <sub>2</sub> : 0.7432; O <sub>2</sub> : 0.1209; Ar: 0.0089 | $CO_2$ : 0.2356; $H_2O$ : 0.0148; $N_2$ : 0.7296; $O_2$ :<br>0.0199 |  |  |
| Flue gas temperature (°C)                  | 40                                                                                                      | 48                                                                  |  |  |
| MEA concentration in lean<br>solvent (wt%) | 30                                                                                                      | 30                                                                  |  |  |
| Lean MEA inlet temp (°C)                   | 40                                                                                                      | 41                                                                  |  |  |
| Capture level (%)                          | 90                                                                                                      | 87                                                                  |  |  |
| Absorber operating pressure (bar)          | 1.2                                                                                                     | 1.03                                                                |  |  |
| Stripper operating pressure (bar)          | 1.62                                                                                                    | 1.6                                                                 |  |  |







## **MODEL SCALE-UP**

RESULTS: This study Vs Agbonghae et al. (2014) for the 450  $\mathrm{MW}_{\mathrm{e}}\,\mathrm{NGCC}$ 

|                                                             | Agbonghae et al (2014) | This Study    | Difference (%) |
|-------------------------------------------------------------|------------------------|---------------|----------------|
| Flue gas flow rate (kg/s)                                   | 725                    | 725           | 0.00           |
| Lean solvent low rate (kg/s)                                | 694.55                 | 671.7         | 3.4            |
| Lean CO <sub>2</sub> loading (mol CO <sub>2</sub> /mol MEA) | 0.20                   | 0.22          | 10             |
| Rich CO <sub>2</sub> loading (mol CO <sub>2</sub> /mol MEA) | 0.483                  | 0.488         | 0.83           |
| Absorber diameter (m)                                       | 2 x 12.88              | 2 x 11.95     | 7.22           |
| Absorber Packing height (m)                                 | 19.06                  | 19.02         | 0.26           |
| Packing type                                                | Mellapak 250Y          | Mellapak 250Y |                |
| Pressure drop (mm- $H_2O/m$ packing)                        | 20.83                  | 18.97         | 8.93           |
| Stripper diameter (m)                                       | 7.74                   | 7.74          | 0.00           |
| Stripper packing height (m)                                 | 28.15                  | 27.5          | 2.31           |
| Packing type                                                | Mellapak 250Y          | Mellapak 250Y |                |
| Pressure drop (mm- $H_2O/m$ packing)                        | 5.31                   | 4.96          | 6.60           |
| Specific reboiler duty                                      | 3.96                   | 3.79          | 4.29           |
| Capture (%)                                                 | 90                     | 90            | 0.00           |







## **MODEL SCALE-UP**

RESULTS: This study Vs Nittaya et al. (2014) for the 750  $\mathrm{MW}_{\mathrm{e}}$  coal-fired

|                                                             | Nittaya et al. (2014) | This Study | Difference (%) |
|-------------------------------------------------------------|-----------------------|------------|----------------|
| Flue gas flow rate (kg/s)                                   | 700                   | 700        |                |
| Lean solvent low rate (kg/s)                                | 3152                  | 3101.7     | 1.60           |
| Lean CO <sub>2</sub> loading (mol CO <sub>2</sub> /mol MEA) | 0.3                   | 0.325      | 8.3            |
| Rich CO <sub>2</sub> loading (mol CO <sub>2</sub> /mol MEA) | 0.5                   | 0.484      | 3.2            |
| Absorber diameter (m)                                       | 3 x 11.8              | 3x 10.78   |                |
| Absorber Packing height (m)                                 | 16.5                  | 16.01      | 3.03           |
| Packing type                                                | IMTP 50               | IMTP50     |                |
| Pressure drop (mm-H <sub>2</sub> O/m packing)               | 42.0                  | 36.02      | 14.00          |
| Stripper diameter (m)                                       | 10.4                  | 10.45      | 0.48           |
| Stripper packing height (m)                                 | 16.0                  | 16.00      | 0.00           |
| Packing type                                                | IMTP50                | IMTP50     |                |
| Pressure drop (mm-H <sub>2</sub> O/m packing)               | -                     | 5.45       |                |
| Specific reboiler duty (GJ/tCO2)                            | 4.4                   | 4.27       | 2.95           |
| Capture (%)                                                 | 87                    | 87         | 0.00           |







## CONCLUSION

- A new approach proposed for packed bed scale-up without the need for assuming pressure drop
- Model development and validation with data from the two pilot plants (Kaiserslautern and Texas) have been carried out
  - Model prediction matched well with pilot plant measurements for the two pilot plants
  - Model captures temperature profiles in the absorber and stripper of the two pilot plants.
  - better predictions for coal fired conditions than gas-fired condition for the Kaiserslautern pilot plant.
- Scale-up of the validated model based on this method was carried out
  - The design was based on 70% flooding
  - Results compared with scale-up methods using GPDC chart (a  $450MW_e$  NGCC and a 750 MW<sub>e</sub> super-critical coal-fired)
  - Results shows that it can predict the column diameter to within less than 10\% error.







## **KEY REFERENCES**

- [1] Agbonghae E. O.; Hughes K. J.; Ingham D. B.; Ma L, Pourkashanian M. Optimal process design of commercial-scale amine-based CO<sub>2</sub> capture plants. *Ind Eng Chem Res* 2014; 53, 14815-14829.
- [2] Biliyok C; Yeung, H. Evaluation of natural gas combined cycle power plant for post-combustion CO<sub>2</sub> capture integration. *Int. J. Greenhouse Gas Control* 2013, 19, 396-405.
- [3] Canepa R, Wang M, Biliyok C, Satta A. Thermodynamic analysis of combined cycle gas turbine power plant with post-combustion  $CO_2$  capture and exhaust gas recirculation. PI Mech Eng E-J pro 2013; 227, 89-105.
- [4] Dugas E R. Pilot plant study of carbon dioxide capture by aqueous monoethanolamine. M.S.E Thesis, University of Texas, Austin, USA, 2006.
- [5] Kister H, and Gill D, Predict Flood Point and Pressure Drop for Modern Random Packings. Chem Eng Prog 1991;87:32–42.
- [6] Lawal A, Wang M, Stephenson P, Obi, O. Demonstrating full scale post-combustion CO<sub>2</sub> capture for coal-fired power plants through dynamic modelling and simulation. *Fuel* 2012, 101, 115-128.
- [7] Nittaya T, Douglas PL, Croiset E, Ricardez-Sandoval LA. Dynamic modeling and evaluation of an industrial-scale CO2 capture plant using monoethanolamine absorption processes. Ind Eng Chem Res 2014;53:11411–26
- [8] Notz, R; Mangalapally, H. P; Hasse, H. Post combustion CO<sub>2</sub> capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. *Int. J. Greenhouse Gas Control* 2012, 6, 84-112.
- [9] Piché S, Larachi F, Grandjean BPA. Loading capacity in packed towers Database, correlations and analysis. Chem Eng Technol 2001;24:373–80.









# THANK YOU FOR

# YOUR

# AUDIENCE



