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“Advanced Image Analysis of Coals”

To develop several new image analysis methods to measure
coal, char, mineral and ash materials resulting in a simple
method that can characterise fuel in a way that enables power
generators to understand the consequences of fuel choices
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ABSTRACT

Chao, E.C.T., Minkin, J.A. and Thompson, C.L., 1952, Application of sutomated image
analysils to coal petrography. Int, J. Coal Geol,, 2:113—160.

The coal petrologist seeks to determine the petrographic characteristics of organic and
inorganic coal constituents and their lateral and vertical variations within a single coal
bed or different coal beds of a particular coal field. Definitive descriptions of coal charac-
teristics and coal facies provide the basis for interpretation of depositional environments,
diagenetic changes, and burial history and determination of the degree of coalification or
metamorphism. Numerous coal core or columnar samples must be studied in detail in
order to adequately describe and define coal mierolithotypes, lithotypes, and lithologic
facies and their variations. The large amount of petrographic information required can
be obtained rapidly and quantitatively by use of an automated image-analysis system
(AIAS).

An AIAS can be used to generate quantitative jc and micr opic modal
analyses for the lithologic unitz of an entire colummnar section of & coal bed, In our
scheme for megascopic analysis, distinctive bands 2 mm or more thick are first demar-
cated by visual inspection. These bands consist of sither nearly pure mierolithotypes or
lithotypes such as vitrite/vitrain or fusite/fusain, or assemblages of microlithotypes.
Megascopic analysis with the aid of the AIAS is next performed to determine volume
percentages of vitrite, inertite, minerals, and microlithotype mixtures in bands 0.5 to 2
mim thick. The microlithotype mixtures are analyzed microscopically by use of the AIAS
to determine their modal composition in terms of maceral and optically observable
mineral components. Megascopic and microscopic data are combined to describe the
coal wnit guantitatively in terms of (V) for vitrite, (E) for liptite, (I) for inertite or
fusite, (M) for mineral components other than iron sulfide, (8) for iron sulfide, and
(VEIM) for the composition of the mixed phases (X;) { = 1,2, etc. in terms of the maceral
groups vitrinite V, exinite E, inertinite I, and optically ohgervable mineral content M.
The volume percentage of esch component present is indicated by a subscript. For
exgmple, a lithologic unit was determined megascopically to have the composition
(V) s(1,08), (X, )us(X,),. After microscopic analysis of the mixed phases, this composi-
tion was expressed as (V),,(I),(8)(V, B\, 1, M,),,(V.E,,I,,M,),. Finally, these data
were combined in a deseription of the bulk composition as V. E, I ,M,5,. An AIAS
can also analyze textural charscteristics and can be used for quick and reliable deter-
mination of rank (reflectance).

Our AIAS is completely software based and incorporates a televizion (TV) camera
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Mineral Detection - SEM/MLA
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Mineral Detection - Air Objectives

Coal Grain Analysis
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Image Analysis

Image Analysis has helped to improve coal and char
assessment significantly over the last 20-30 years

It remains a challenge to combine all the useful
characteristics that are measured using EM/OI

Predicting all major events (boiler performance, slagging
and fouling and EP performance) would be a powerful tool

for generators




Project Aims

Develop several new image analysis techniques to;

Rapidly characterise fuels to predict boiler performance

Provide plant operators with a fully automated tool

- Analyse both blends and single fuel sources



Approach

COAL
PROPERTIES

Combustion models e.g CBK, CFD

CARBON IN
ASH
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Part 1 - Carbon Materials, Char
Generation & Analysis

Moisture 0.6 0.7 4.6 0.9 2.3 2.8 5.4 3.2 2.9 3.9 0.7

Volatiles 2866 7.5 25.9 7.5 244 35.8 38.4 30.8 349 311 7.0

Fixed Carbon 59.6 84.7 61.7 66.1 58.4 53.5 51.2 50.0 53.1 48.5 61.9

Ash 1.2 7.1 7.8 254 14.9 7.9 5.0 16.0 9.1 16.5 30.4

Fuel Ratio 21 11.2 2.4 8.8 2.4 1.5 1.3 1.6 1.5 1.6 8.8
y

Pyrolysis using Drop-Tube-Furnace (1300 °C, 200ms, 1% oxygen)

Laboratory suite of testing (TGA, Elemental Analysis, Calorific content, Density, BET Surface area)




Part 2 - Image Capture & Segmentation




Part 2 - Image Capture & Segmentation
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- Image Capture & Segmentation
Acuve wontours segmentation algorithm

Does not rely on edge detection, which 7N \
is susceptible to blemishes 5 ) ' /

Iterative, energy minima segmentation
method

a) Initial b) Stopped by
contour an obstacle

Proximity average of foreground and
background mean values



Part 2 - Image Capture & Segmentation

Image



Part 3 - Individual Particle Analysis
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Coal Chars - ICCP Atlas Classification

Char Wall Thickness
Char Voidage and Porosity

Fused and Unfused Structures

Tenuisphere Crassisphere Tenuinetwork Crassinetwork Inertoid Fusinoid/Solid

SOURCE: Alvarez, D., Lester, E.: Atlas of char occurrences. combustion working group, commission iii. In: International Conference/on Coal Petrology,



Part 3 - Individual Particle Analysis

Maceral content
nertinite fragment count

nertinite proximity to particle
ooundary

%Unreactives

Reflectance histogram mean peak
value

Particle size
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Part 4 - Char Morphology Prediction

Particle Size
Inertinite Content
s%Unreactives
Inertinite Fragments
Fragment proximity Mean
Grayscale Peak
Porosity
PREDICTED CHAR MORPHOLOGY

111.2 microns
56.2 %
24.6 %

70
0.3372 microns



Part 4 - Char Morphology Prediction

MORPHOLOGY PREDICTED % MANUAL %
TENUISPHERE 16 21.C
TENUINETWORK 40 40.0
CRASSISPHERE 26 26.0
CRASSINETWORK 8 6.0
FUSINOID 2 4.0
SOLID 8 2.0



Part 4 - Char Morphology Prediction

COKE
MOISTURE 3.9 2.9 0.0
VOLATILES 31.1 34.9 1.1

FIXED CARBON 48.5 53.1 84.8

ASH 16.5 9.1 14.1

FUEL RATIO 1.6 1.5 75.6

V. REFLECTANCE 0.54 0.54 7.0

PREDICTED % MANUAL % PREDICTED % MANUAL %

TENUISPHERE 16 21 12 14 0 0
TENUINETWORK 40 40 14 14 0 0
CRASSISPHERE 26 26 12 40 0 0
CRASSINETWORK 8 6 46 14 7 10
FUSINOID 2 4 1 12 3 25
SOLID 8 2 15 6 90 58
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Part 6 - Char Burnout Simulations




Part 6 - Char Burnout Simulations
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Part 6 - Char Burnout Simulations
‘Pacman’

Iterative, 1x directional ‘eating’ process (1 x pixel bites)

Available exposed surface




Char Erosion Profiles - 30 Bites
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Pacman Erosion Method Comparison
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Char Mosaic Erosion Profiles
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Part 6 - Char Burnout Simulations Continued
(‘Pacman 2.0°)

Controllable, circular active contour method

Char pixels (‘combustion surface’) in contact with contour after each (x) iteratio
eaten

Variables
Number of iterations - Combustion duration
Contraction bias - Pore availability for combustion

‘Viscosity’ - Degree of propagation per iteration



Part 6 - ‘Pacman’ 2.0

Variables

Number of iterations - Combustion duration

Contraction bias - Exposed pore resolution

‘Viscosity’ - Degree of propagation per iteration

Original Char Image
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Part 6 - Char Burnout Simulations Continued
(Pacman 2.0)

Generate combustion intermediates to train combustion model
5 Coals

Pyrolysis in drop tube furnace (DTF) at 1300 degrees, 1%
Oxygen , 200ms

Refire char samples at 200, 400, 600 ms (1300 degree, 5%
Oxygen)

Train Pacman 2.0 variables to recreate char structures at each
residence time
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Part 5 - ‘Morphing’ Linker Step & Predictions
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Conclusions & Further Work

Image analysis is a powerful tool for understanding the characteristics
of a coal fuel

Predicted char morphology can be derived from single coal particle
images

One-click process providing fast & relevant information to a power
generator

Opportunities to relate combustion kinetics to char erosion methods

Further Work

Work to refine Pacman 2.0 to kinetic characteristics of the fuels
Morphing linker step



