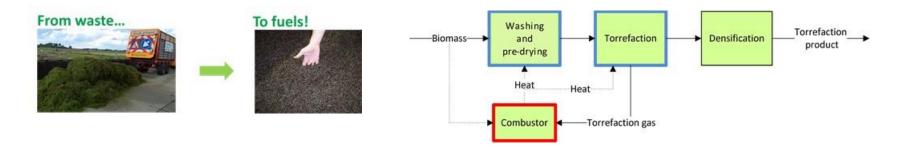
COMBUSTION IMPROVEMENTS

12th ECCRIA 2018 Dr. P.M.R. Abelha



SCOPE OF THE WORK

- > Upgrade several low-grade biomass materials at **lab-scale** (washing and torrefaction):
 - > Tomato foliage
 - Road-side grass
 - Miscanthus
 - Wheat straw
 - > Spruce bark
 - Sunflower husks, etc...
- > Promotes the interest for <u>low-cost</u> alternative biomass sources
- > Enhances energy density, homogeneity, hydrophobicity, grindability, transport, etc.
- > <u>Reduces</u> alkalis and chlorine contents
- > <u>Reduces</u> equipment maintenance cost corrosion, fouling, slagging

2 | Cardiff presentation

SCOPE OF THE WORK

> Produce representative upgraded biomass at **pilot** plant level

- > Batches between 500-800 kg
- **Lab-scale** Combustion tests with the upgraded biomass at pilot plant level
 - > Emissions, slagging and fouling

MATERIALS

- List of feedstocks
 - Empty Fruit Bunches
 - Miscanthus
 - Sun flower husk
 - Road side grass
 - Wheat straw
 - Spruce bark
 - Tomato foliage

METHODS

+ solid

From lab scale...

liquid

10-50 g per batch

2 kg per batch

washing at T

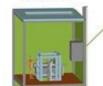
Variables:


>

filtration

- Liquid/Solid ratio (L/S)
- Temperature
- Time

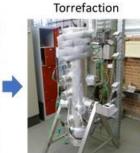
conductivity



To pilot-scale!

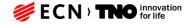
Washed biomass Low salts content 50 kg/h

Torrefaction

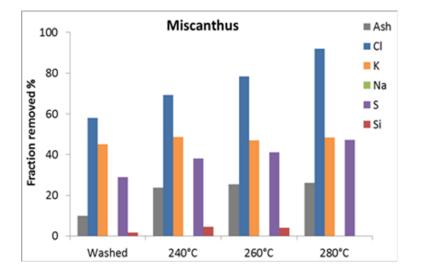


Pelletization

4 material selected

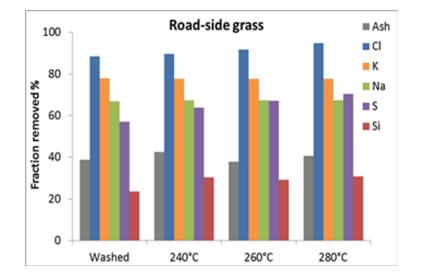


RESULTS (UPGRADING)


	HHV (MJ/kg)					
Pre-treatment	Grass	Straw	Miscanthus	Bark		
Original	16,5	17,5	18,3	19,9		
Washed	16,7	17,7	18,6	20,1		
Washed+T240	18,1		19,7			
Washed+T260	18,3	19,2	19,5	21,5		
Washed+T280	19,0		20,3			

- > Higher heating contents
- Limited mass loss
- > High energy yields (> 85%)

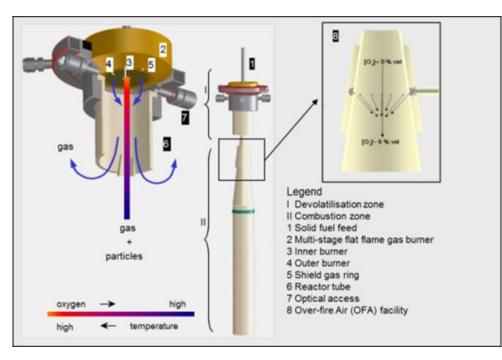
	Mass yield (%)					
Pre-treatment	Grass	Straw	Miscanthus	Bark		
Washed	81	92	93	95		
Washed+T240	73 -		85			
Washed+T260	66	78	79	82		
Washed+T280	58	- 69		-		
		Energ	gy yield (%)			
Pre-treatment	Grass	Straw	Miscanthus	Bark		
Washed	82	93	95	96		
Washed+T240	0 80		92	-		
Washed+T260	73	86	84	88		
Washed+T280	67	- 77		-		



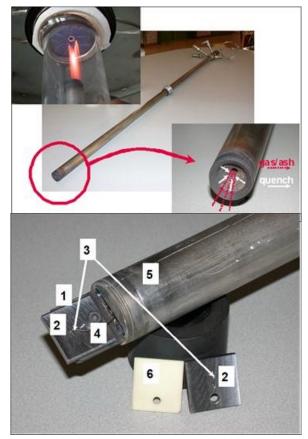
RESULTS (UPGRADING)

- > Torrefaction has limited effect in CI removing
- > Torrefaction has no effect in K removing

- Combined effect of washing and torrefaction:
 - Removal of 90-95% CI, 50-80% K, 30-60% S and 30% P

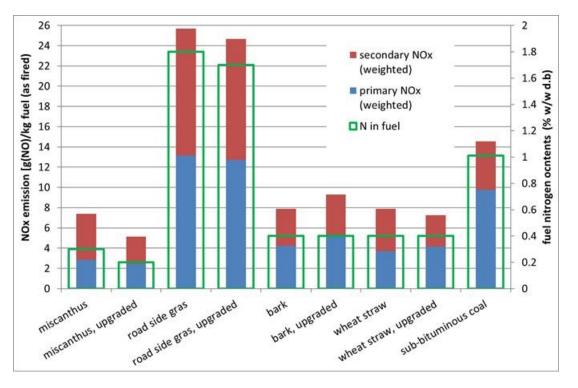

RESULTS (CHARACTERISATION)

Ultimate and proximate analysis


(RSG = road side grass)

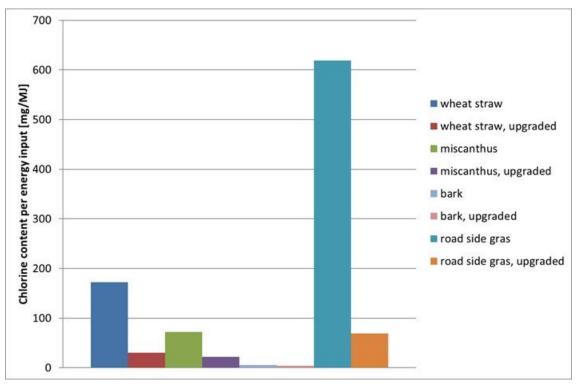
		wheat straw	wheat straw, upgraded	miscanthus	miscanthus, upgraded	spruce bark	spruce bark, upgraded	RSG	RSG, upgraded
ash content (550°C)	[wt%, dry]	10.3	9.3	2.1	3.1	3.4	4	18.1	14.8
ash content (815°C)	[wt%, dry]	10.2	8.8	2	2.8	3.2	3.5	16.9	14.1
volatile matter	[wt%, dry]	71.8	70.9	81.7	75.7	74.5	69.2	66.1	61.5
moisture	[wt%, ar]	1.6	3	1.5	1.5	0.5	0.5	1	1.5
HHV	[MJ/kg, dry]	17.5	19.2	19.3	20.4	19.9	21.5	16.5	20
carbon	[wt%, dry]	42.9	47.7	47.7	50.1	49.4	54.3	41.4	49.9
nitrogen	[wt%, dry]	0.4	0.4	0.3	0.2	0.4	0.4	1.8	1.7
hydrogen	[wt%, dry]	5.6	5.5	5.9	5.6	5.8	5.6	5.3	5.3
oxygen	[wt%, dry]	38.6	35.9	43.3	38.9	40.2	36.2	35.4	30.7
chlorine	[mg/kg, dry]	2800	540	1300	420	100	88	9500	1300
AI	[mg/kg, dry]	45	180	79	160	470	580	1700	1400
В	[mg/kg, dry]	1.8	2	1.9	12	11	11	40	15
Ва	[mg/kg, dry]	0.73	6.8	8.2	4.4	220	250	25	33
Ca	[mg/kg, dry]	2800	3800	1000	1700	11000	14000	18000	13000
Fe	[mg/kg, dry]	49	250	61	330	280	370	1800	1400
к	[mg/kg, dry]	8400	3400	2300	1800	2000	1000	17000	4400
Mg	[mg/kg, dry]	560	560	360	420	810	850	2000	1600
Mn	[mg/kg, dry]	17	42	22	15	650	680	530	140
Na	[mg/kg, dry]	140	440	260	470	160	500	1600	1000
Р	[mg/kg, dry]	830	610	220	250	510	430	4000	2200
S	[mg/kg, dry]	820	520	480	360	330	310	3400	1400
Si	[mg/kg, dry]	36000	34000	6500	14000	1900	2300	45000	46000
Sr	[mg/kg, dry]	11	23	5.3	10	44	55	91	55
Ti	[mg/kg, dry]	350	41	220	18	120	87	930	220
Zn	[mg/kg, dry]	6.4	29	9.1	50	140	170	39	78

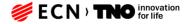
RESULTS (COMBUSTION)



RESULTS (COMBUSTION)

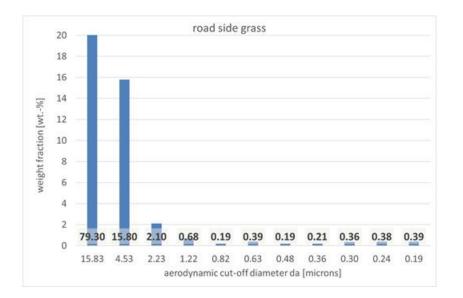
NOx

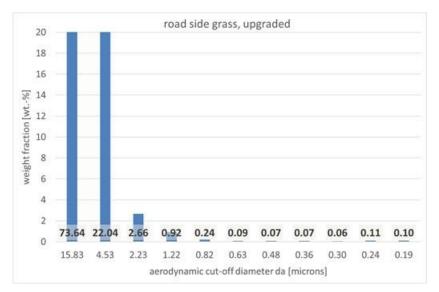

- Primary NOx volatiles combustion
- Secondary NOx char combustion
- Upgrading doesn't increase NOx emissions
- Higher NOx for grass, but still with margin for primary NOx reduction
- Upgraded miscanthus leaded to the lower NOx emissions



RESULTS (COMBUSTION)

High temperature corrosion risk (Cl content)


- Miscanthus and Bark with lower Cl contents gave lower Cl emissions
- Upgrading decreases significantly the CI contents and therefore the CI emissions
- No significant high temperature chlorine corrosion is expected after upgrading. Exception: upgraded grass (Cl > 50 mg/MJ)



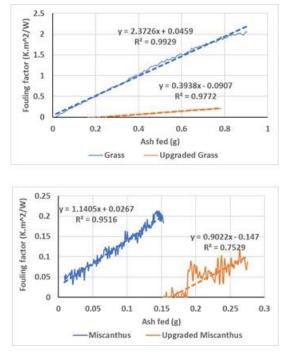
RESULTS (COMBUSTION)

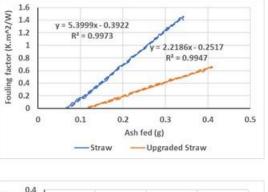
Submicron particles (Pilat Mark V cascade impactor)

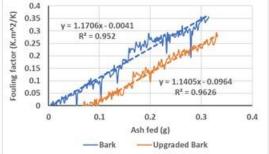
- <u>Upgrading</u>: Clear decrease in the sub-micron particles emissions for all biomasses
- Expected reduction in fouling tendency as well

RESULTS (COMBUSTION)

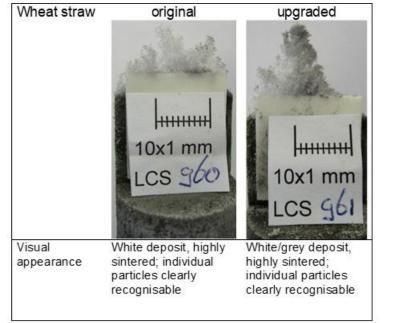
Sub-micron particles

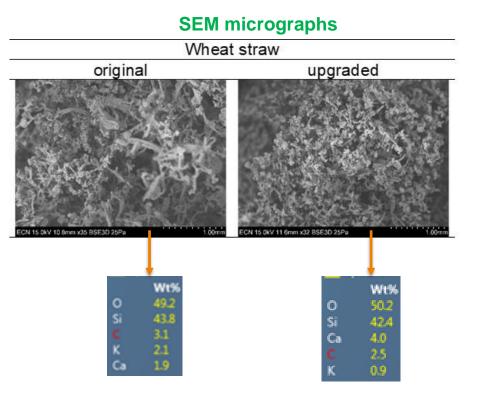

	Reduction in sub-micron particles, by mass
Wheat straw	66.8%
Miscanthus	78.3%
Spruce bark	44.4%
Road side grass	64.6%


RESULTS (COMBUSTION)

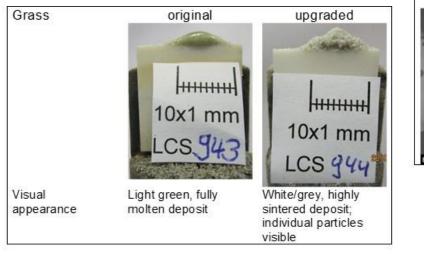

Fouling probe

 <u>Upgrading</u>: Clear decrease in fouling of heat transfer surfaces for all biomasses, although for bark only small decrease.





RESULTS (COMBUSTION)


Slagging probe (near burner conditions)

RESULTS (COMBUSTION)

Slagging probe

Road side grass upgraded original ECN 15 0kV 13 1mm x32 BSE3D 25P CN 15 0kV 11 0mm x35 BSE3D 25P Wt% Wt9 30.7 10.6 30.1 9.8 3.5 2.7 Fe Mg 1.3 1.3 0.8 Mg Na Na

SEM micrographs

CONCLUSIONS

- Low-grade biomasses like grass, straw, miscanthus and bark were upgraded by washing and torrefaction with success.
- The upgraded biomasses showed good properties for energy use applications; lab and pilot scale results are consistent.
- > About 90-95% of CI, 50-80% K, 30-60% S and 30% P can be removed during upgrading.
- > Wash step crucial to the removal of K.
- > Post-wash seems to be a viable route to upgrade dry-type biomasses.

CONCLUSIONS

- > NOx emissions are not a matter of concern for the fuels under investigation. Exception: road side grass.
- > Fine particulate matter (submicron/aerosols) formation is strongly reduced by upgrading the fuels, effectively reducing the risk of alkali induced fouling.
- > High temperature chlorine corrosion can be effectively mitigated. Exception: road side grass, still exposes some corrosion risk.
- Slagging tests revealed that pre-washing and torrefaction has minor impact on the slagging propensity of the fuel. Only, slightly reduced slagging is observable.
- Recommendation: use mineral combustion additives, or smart blending with other fuels in order to further mitigate the slagging risks.

ACKNOWLEDGEMENTS

- Research funded by the Dutch Ministry of Economic Affairs (Tender 1 BBE KEW project TEBE214004).
- This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727616.

THANK YOU FOR YOUR ATTENTION

1228 288

TNO.NL/ECNPARTOFTNO

