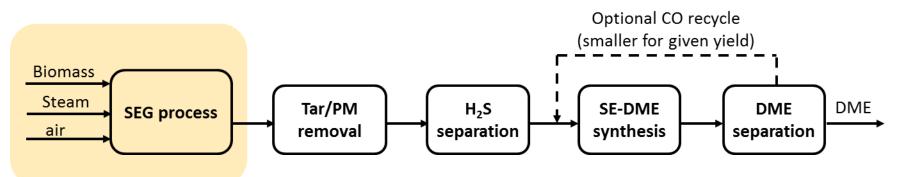
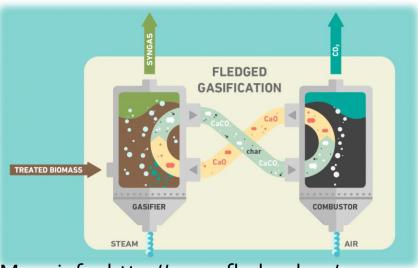


Experimental investigation on sorption enhanced gasification (SEG) of biomass in a fluidized bed reactor for producing a tailored syngas

I. Martínez*, V. Kulakova, G. Grasa, R. Murillo

Instituto de Carboquímica (Spanish Research Council, CSIC)


12th ECCRIA CONFERENCE, 5th-7th September 2018, Cardiff (UK)



FLEDGED Project (H2020 Programme)

 OBJECTIVE FLEDGED project: Develop a highly intensified and flexible process for DME production from biomass and validate it under industrially relevant environments (i.e. Technology Readiness Level 5 (TRL))

More info: http://www.fledged.eu/

- Indirect gasification in a dual fluidized bed system using CaO as bed material
- Energy needed for gasification supplied by CaO carbonation (→ CaCO₃) and by circulating solids
- Unconverted char leaving the gasifier supplies the energy needed in the combustor
- The presence of CaO simplifies the syngas cleaning and purification section

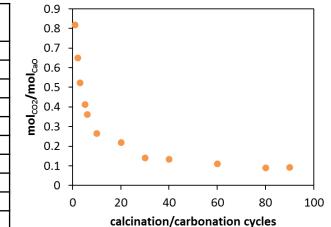
FUNDAMENTAL RESEARCH ON GASIFICATION OF DIFFERENT BIOMASSES AND DIFFERENT NATURAL SORBENTS

✓ Assessment of the enhanced gasification process in a bubbling fluidized bed reactor

- Test the different biomasses under different conditions of temperature, sorbent/fuel ratio and steam/carbon ratio.
- Influence of **type of sorbent** and the **activity** of the limestone (number of cycles)

Sorption enhanced gasification tests using grape seeds as biomass have been performed, analyzing the effect of the S/C ratio, the sorbentto-biomass ratio and the activity of the sorbent on the syngas composition

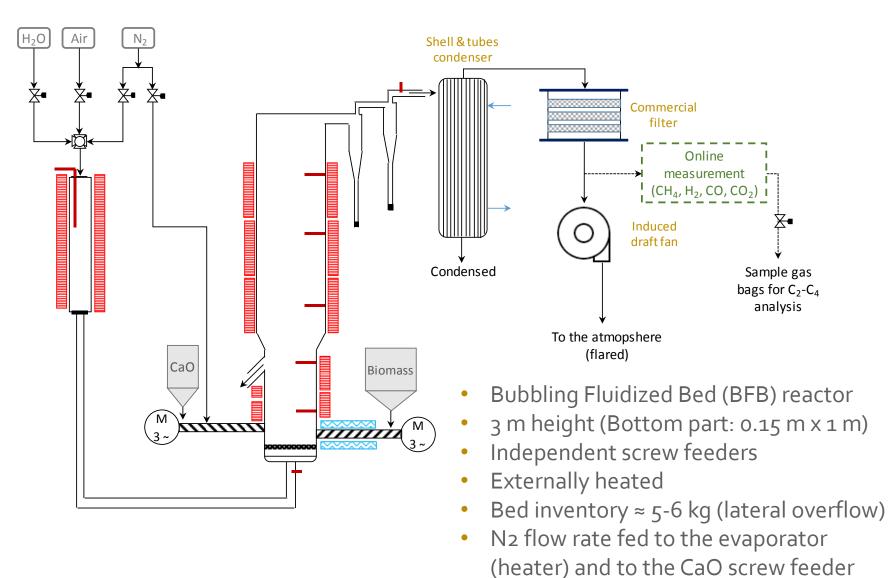
o Biomass: Grape seeds


Ultimate analysis [%wt.]		Proximate analysis [%wt.]		
С	53.92	Moisture	6.30	
Н	6.58	Volatile	65.12	
		matter		
Ν	2.20	Ash	4.30	
S	0.12	Fixed carbon	24.28	
0	32.35			
Cl	0.06	LHV [MJ/kg]	20.51	

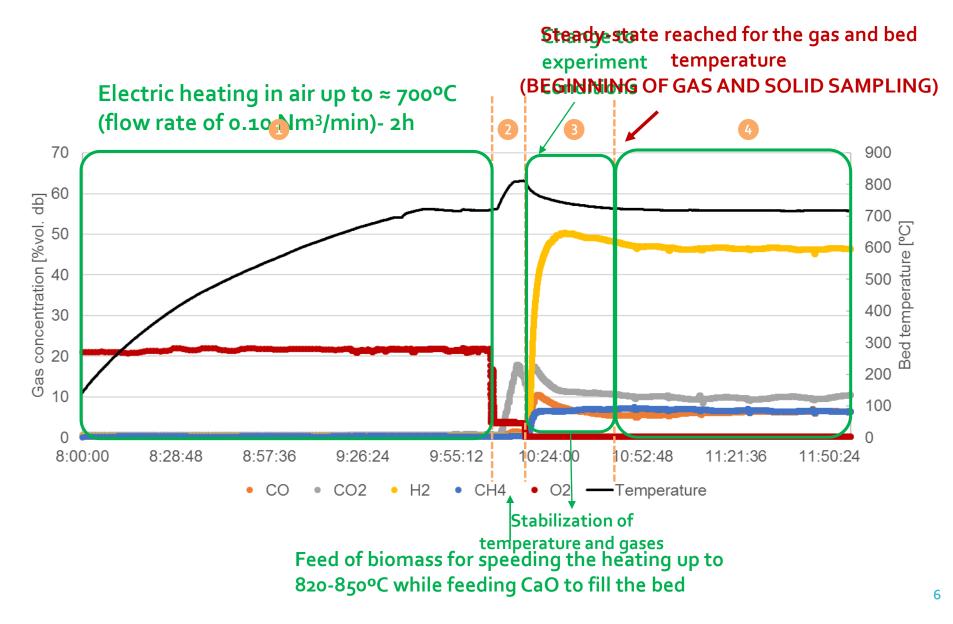
- Homogenous biomass
- High LHV (compared with PW or A1 pellets)
- Relatively low Ash and S contents (residual biomass)

4.5-6.8 mm

o <u>CO2 sorbent</u>: Calcined limestone

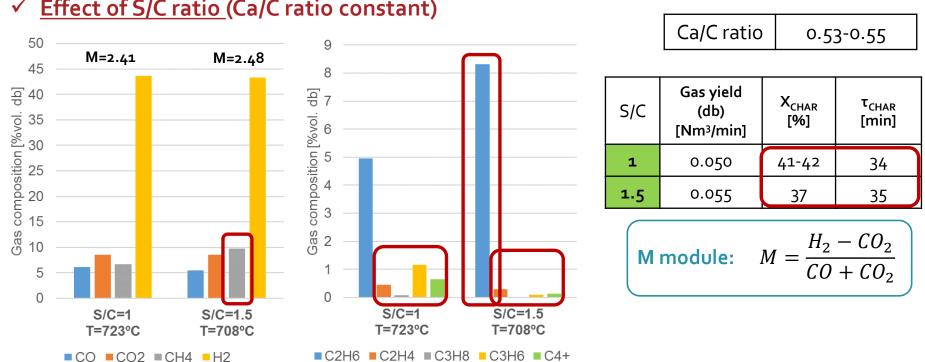

	Calcined	
	limestone	
CaO [%wt]	98.25	
Al_2O_3 [%wt]	0.145	
Fe ₂ O ₃ [%wt]	0.002	
K ₂ O [%wt]	<0.001	
MgO [%wt]	0.183	
Na ₂ O [%wt]	<0.001	
SiO ₂ [%wt]	0.132	
Porosity [-]	0.52	
Surface area [m²/g]	8.8	
Solid density [kg/m ³]	3139	

- High purity limestone
- Mean particle diameter: 450 microns
- Typical CO₂ sorption decay of natural Ca-based sorbents


Sorption enhanced gasification (SEG) tests Experimental facility

5

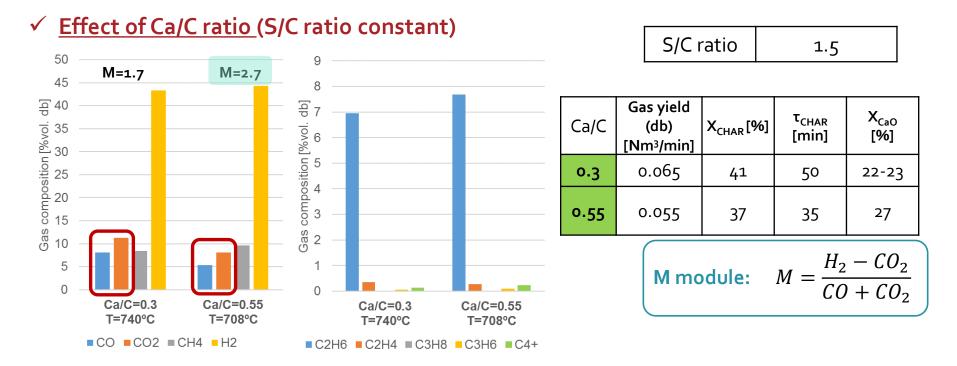
S/C ratio	1	1.5
0.55		
0.5		
0.45		
0.4		
0.3		


- Different Ca/C ratios (0.3-0.55) and S/C ratios (1 and 1.5) tested
- Stabilization temperature between 707 and 755°C
- Effect of CO₂ carrying capacity of the sorbent used tested

Char conversion in the BFB gasifier:

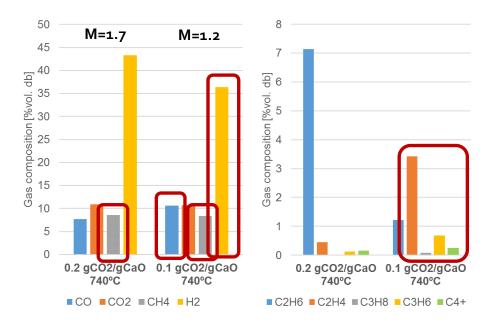
$$X_{CHAR} = 1 - \frac{m_{C,s \ overflow}}{m_{FC,biomass}}$$

$$\tau_{CHAR} = \frac{m_{char,SS}}{\dot{m}_{biomass} \cdot (y_{FC} + y_{ash})}$$



Effect of S/C ratio (Ca/C ratio constant)

- Amount of C₃+ and unsaturated C₂ reduced <0.53%vol. with S/C ratio of 1.5 (≈2.4%vol. for S/C=1)
- •C3+ and C_2H_4 cracked into C_2H_6 and CH_4 , resulting into a larger gas yield
- •Solid residence time for char particles has not changed, differences in conversion due to temperature


- •No effect on C₃+ and unsaturated C₂ (<0.59%vol.) since S/C ratio is high
- CH₄ (and C₂H₆) is **slightly higher for Ca/C=0.55** due to the **lower stabilization temperature** when Ca/C increases
- Larger M module for Ca/C=0.5 (lower temperature): linked to the amount of CO2 separated
- •Lower temperature and larger excess of CaO improve CO2 separation and reduce CO2 in the syngas (→ less CO content since WGS reaction is pushed)

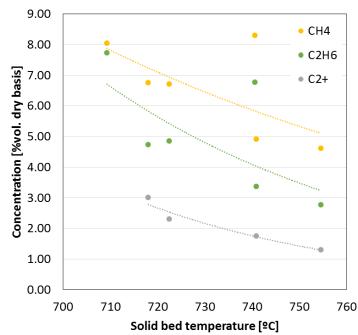
1.5

0.3

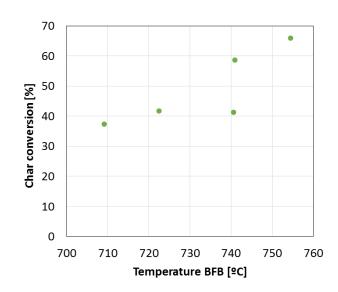
✓ Effect of CO₂ sorbent activity (S/C and Ca/C ratios constant)

g _{co2} /g _{caO}	Gas yield (db) [Nm³/min]	X _{CHAR} [%]	τ _{CHAR} [min]	X _{CaO} [%]
0.2	0.065	41	50	22-23
0.1	0.056	40	48	15

 Less CO₂ is separated from the gas phase (less activity of the CaO) → lower amount of H₂ and higher CO


S/C ratio

Ca/C ratio


- CH₄ concentration is kept constant at 8.5%vol. (db) (stabilization temperature is the same)
- Amount of C₃+ and unsaturated C₂ increased for deactivated CaO (4.4%vol. vs 0.7%vol.) → less H₂ produced (less cracking into saturated C₂ and CH₄)
- Increased gas yield for more active CO2 sorbent since the amount of lighter C+ and H2 is raised

✓ Factors influencing the efficiency of the biomass-to-biofuel process

- Important to reduce the CH₄ and C₂₊ concentrations (inerts→ reduce yield and decrease the global efficiency)
- Dependence of HCs content on temperature → higher temperature decreases HCs concentration (except for C2+ and S/C=1.5, not depicted in figure)
- Limit on HCs reduction → need of conditioning steps before the synthetic fuel production process (i.e. reforming stage)

- Char conversion in the gasifier influenced by the temperature (CaO excess and τ barely affect)
- Efficiency of the SEG has an optimum: increasing char conversion boosts the efficiency but if there is not enough unconverted char in the combustor/calciner, additional biomass is needed (efficiency)

- ✓ The effect of the steam-to-carbon, CO₂ sorbent-to-biomass and the sorbent CO₂ carrying capacity have been assessed for the sorption enhanced gasification of grape seeds
- ✓ S/C ratios of 1.5 needed for reducing C2H4 and C3+ concentrations below 0.6%vol. (db), which will impact the downstream fuel production process
- ✓ CH4 and C2H6 concentrations have shown dependence with temperature (i.e. decreases with increasing temperature). CH4 contents as low as 4.5 %vol. (db) at around 755°C have been obtained
- ✓ A wide range of M modules has been obtained (M=1.7-2.7), suitable for producing different types of biofuels (i.e., M=2 for DME or M=3 for SNG)

FUTURE WORK

- Tar and S- compounds analysis to be tuned-up (analysis under different operating conditions in the next campaign)
- ✓ Higher S/C and wider range of temperatures to be tested
- ✓ Other biomasses to be studied

Thanks for you attention

This project has received funding from the European Union's Horizon 2020 research and innovation Programme under grant agreement No 727600

http://www.fledged.eu/

12th ECCRIA CONFERENCE, 5th-7th September 2018, Cardiff (UK)

