Efficient Sm modified Mn/TiO₂ catalysts for selective catalytic reduction of NO with NH₃ at low temperature Lijun Liu, Sheng Su*, Limo He, Mengxia Qing, Kai Xu, Jun Xu, Song Hu, Yi Wang, Jun Xiang* State Key Laboratory of Coal Combustion (SKLCC) Huazhong University of Science & Technology (HUST) **01** Research background **02** Experimental CONTENTS **03** Results and discussion 04 Conclusions ### Research background ### **Experimental** ### Catalyst design MnO_x has excellent low temperature SCR activity Mn^[1]-Sm/TiO₂^[2] **Propose** TiO₂-supported MnO₂ catalysts showed more promising SCR activity Sm can prevent transition from Mn⁴⁺ to Mn³⁺ [1] D.A. Peña, B.S. Uphade, P.G. Smirniotis, J. Catal. 221 (2004) 421-431. [2] P.G. Smirniotis, P.M. Sreekanth, D.A. Peña, R.G. Jenkins, Ind. Eng. Chem. Res. 45 (2006) 6436-6443. ### **Experimental** #### **Catalytic activity test** #### Schematic diagram of the experimental system. $$NO_x$$ conversion = $\frac{[NO_x]_{in} - [NO_x]_{out}}{[NO_x]_{in}} \times 100\%$ $$N_{2} \text{ selectivity} = \frac{[NO_{x}]_{in} + [NH_{3}]_{in} - [NO_{x}]_{out} - [NH_{3}]_{out} - 2[N_{2}O]_{out}}{[NO_{x}]_{in} + [NH_{3}]_{in} - [NO_{x}]_{out} - [NH_{3}]_{out}} \times$$ #### **Test condition** #### Simulated flue gas: 500 ppm NO, 500 ppm NH₃, 5% O₂, 5% $H_2O(when used)$, 100 ppm $SO_2(when used)$ and N_2 as balance **Total flow rate:** 1L/min Particle size: 40-60 mesh Gas hourly space velocity: 60000 h⁻¹ #### **Characterization** #### Physicochemical properties XRD BET XPS NH₃-TPD H₂-TPR #### **Reaction mechanism** in situ DRIFTS #### **Catalytic performance** **Optimum loading: 10%** $50\% \rightarrow 85\%$ at 120 °C Higher N₂ selectivity Over 95% at 80-150 °C $85\% \rightarrow 70\%$ for Mn-Sm $80\% \to 55\%$ for Mn ### **Specific surface area: BET** | catalyst | BET surface area | pore volume | average pore size | | |-----------------------------------|------------------|-------------|-------------------|--| | | (m^2/g) | (cm^3/g) | (nm) | | | TiO_2 | 50.45 | 0.24 | 19.41 | | | 20Mn/TiO ₂ | 43.67 | 0.34 | 31.55 | | | 20Mn-5Sm/TiO_2 | 45.93 | 0.30 | 26.24 | | | $20 \text{Mn-}10 \text{Sm/TiO}_2$ | 47.69 | 0.33 | 27.38 | | | $20 \text{Mn-}20 \text{Sm/TiO}_2$ | 38.40 | 0.29 | 30.67 | | - > The surface areas of Mn-Sm/TiO₂ catalysts increased in the presence of Sm₁ - > The doped Sm could promote the dispersion of manganese oxide ### **Crystal structure: XRD** Diffraction peaks of TiO₂ are observed No Mn and Sm species are detected Strong interaction between Mn and Ti #### Oxidation state and surface atomic concentrations: XPS | catalyst | surface atom concentration | | | | | | |----------------------------|------------------------------------|----------------------|-------|------------------------|------------------------|--| | | Mn ⁴⁺ /Mn ³⁺ | Mn ⁴⁺ /Mn | Mn/Ti | O_{α}/O_{β} | O _{\alpha} /O | | | $20 \mathrm{Mn/TiO}_2$ | 2.08 | 36.81% | 0.21 | 0.38 | 27.75% | | | 20Mn-10Sm/TiO ₂ | 2.46 | 41.57% | 0.43 | 0.54 | 35.10% | | - ➤ The presence of Sm could inhibit the crystallization of manganese oxide; - \triangleright Mn could incorporate into lattice structure of TiO₂; - ➤ The addition of Sm could promote the surface active oxygen species. ### Acidity: NH₃-TPD ➤ Lewis acid site might not be the main factor in low-temperature NH₃-SCR of NO_x over these catalysts. #### Redox property: H₂-TPR ➤ The reducibility may be play an important role in low-temperature SCR activity. #### Reaction of NH_3 with pre-adsorbed $NO + O_2$: In situ DRIFTS - The bridging nitrates are the main active nitrate species; - ➤ The SCR reactions over the Mn/TiO₂ catalyst can proceed through L–H mechanism. - ➤ The bridging nitrates were not formed on the surface of Mn-Sm/TiO₂ catalyst; - ➤ The SCR reactions over the Mn-Sm/TiO₂ catalyst can not happen via L-H mechanism. #### Reaction of NO + O_2 with pre-adsorbed NH₃: In situ DRIFTS - ➤ All bands of coordinated NH₃, NH₄⁺ and -NH₂ species disappeared gradually after exposure to NO + O₂; - ➤ The SCR reactions over the Mn/TiO₂ catalyst can proceed through E–R mechanism. - ➤ The reaction of preadsorbed NH₃ with NO + O₂ on Mn-Sm/TiO₂ catalyst was significantly faster than that over Mn/TiO₂ catalyst; - ➤ The Sm modified catalyst possessed more –NH₂ species than Mn/TiO₂ catalyst. #### Adsorption and reaction of $NH_3 + NO + O_2$: In situ DRIFTS - \triangleright The co-existence of the NH₃ ad-species and NO_x adspecies are observed; - ➤ The reactive bridging nitrate and the -NH₂ and NH₄⁺ intermediates are all absent. - ➤ The adsorption of NO can not happen in the presence of NH₃; - ightharpoonup The formed $-NH_2$ species quickly reacted with gaseous NO to produce N_2 and H_2O . ### Conclusions - ➤ The best 20Mn-10Sm/TiO₂ catalyst achieved almost 85% NO conversion with a GHSV of 60000 h⁻¹ at 120 °C; - The presence of Sm can improve the dispersion of manganese oxide and the relative concentration of surface oxygen (O_{α}) ; - The SCR reaction mechanism changed by inhibiting the formation of bridging nitrate in the presence of Sm and the reactions can proceed only through Eley-Rideal mechanism; - ➤ The enhanced oxygen transport after introduction of Sm boost the reaction rate. ## THANKS FOR YOUR LISTENING!