

Efficient Sm modified Mn/TiO₂ catalysts for selective catalytic reduction of NO with NH₃ at low temperature

Lijun Liu, Sheng Su*, Limo He, Mengxia Qing, Kai Xu, Jun Xu, Song Hu, Yi Wang, Jun Xiang*

State Key Laboratory of Coal Combustion (SKLCC)
Huazhong University of Science & Technology (HUST)

01 Research background

02 Experimental

CONTENTS

03 Results and discussion

04 Conclusions

Research background

Experimental

Catalyst design

MnO_x has excellent low temperature SCR activity

Mn^[1]-Sm/TiO₂^[2]

Propose

TiO₂-supported MnO₂ catalysts showed more promising SCR activity

Sm can prevent transition from Mn⁴⁺ to Mn³⁺

[1] D.A. Peña, B.S. Uphade, P.G. Smirniotis, J. Catal. 221 (2004) 421-431.

[2] P.G. Smirniotis, P.M. Sreekanth, D.A. Peña, R.G. Jenkins, Ind. Eng. Chem. Res. 45 (2006) 6436-6443.

Experimental

Catalytic activity test

Schematic diagram of the experimental system.

$$NO_x$$
 conversion = $\frac{[NO_x]_{in} - [NO_x]_{out}}{[NO_x]_{in}} \times 100\%$

$$N_{2} \text{ selectivity} = \frac{[NO_{x}]_{in} + [NH_{3}]_{in} - [NO_{x}]_{out} - [NH_{3}]_{out} - 2[N_{2}O]_{out}}{[NO_{x}]_{in} + [NH_{3}]_{in} - [NO_{x}]_{out} - [NH_{3}]_{out}} \times$$

Test condition

Simulated flue gas:

500 ppm NO, 500 ppm NH₃, 5% O₂, 5% $H_2O(when used)$, 100 ppm $SO_2(when used)$ and N_2 as balance

Total flow rate: 1L/min

Particle size: 40-60 mesh

Gas hourly space velocity: 60000 h⁻¹

Characterization

Physicochemical properties

XRD BET XPS NH₃-TPD H₂-TPR

Reaction mechanism

in situ DRIFTS

Catalytic performance

Optimum loading: 10%

 $50\% \rightarrow 85\%$ at 120 °C

Higher N₂ selectivity

Over 95% at 80-150 °C

 $85\% \rightarrow 70\%$ for Mn-Sm

 $80\% \to 55\%$ for Mn

Specific surface area: BET

catalyst	BET surface area	pore volume	average pore size	
	(m^2/g)	(cm^3/g)	(nm)	
TiO_2	50.45	0.24	19.41	
20Mn/TiO ₂	43.67	0.34	31.55	
20Mn-5Sm/TiO_2	45.93	0.30	26.24	
$20 \text{Mn-}10 \text{Sm/TiO}_2$	47.69	0.33	27.38	
$20 \text{Mn-}20 \text{Sm/TiO}_2$	38.40	0.29	30.67	

- > The surface areas of Mn-Sm/TiO₂ catalysts increased in the presence of Sm₁
- > The doped Sm could promote the dispersion of manganese oxide

Crystal structure: XRD

Diffraction peaks of TiO₂ are observed

No Mn and Sm species are detected

Strong interaction between Mn and Ti

Oxidation state and surface atomic concentrations: XPS

catalyst	surface atom concentration					
	Mn ⁴⁺ /Mn ³⁺	Mn ⁴⁺ /Mn	Mn/Ti	O_{α}/O_{β}	O _{\alpha} /O	
$20 \mathrm{Mn/TiO}_2$	2.08	36.81%	0.21	0.38	27.75%	
20Mn-10Sm/TiO ₂	2.46	41.57%	0.43	0.54	35.10%	

- ➤ The presence of Sm could inhibit the crystallization of manganese oxide;
- \triangleright Mn could incorporate into lattice structure of TiO₂;
- ➤ The addition of Sm could promote the surface active oxygen species.

Acidity: NH₃-TPD

➤ Lewis acid site might not be the main factor in low-temperature NH₃-SCR of NO_x over these catalysts.

Redox property: H₂-TPR

➤ The reducibility may be play an important role in low-temperature SCR activity.

Reaction of NH_3 with pre-adsorbed $NO + O_2$: In situ DRIFTS

- The bridging nitrates are the main active nitrate species;
- ➤ The SCR reactions over the Mn/TiO₂ catalyst can proceed through L–H mechanism.

- ➤ The bridging nitrates were not formed on the surface of Mn-Sm/TiO₂ catalyst;
- ➤ The SCR reactions over the Mn-Sm/TiO₂ catalyst can not happen via L-H mechanism.

Reaction of NO + O_2 with pre-adsorbed NH₃: In situ DRIFTS

- ➤ All bands of coordinated NH₃, NH₄⁺ and -NH₂ species disappeared gradually after exposure to NO + O₂;
- ➤ The SCR reactions over the Mn/TiO₂ catalyst can proceed through E–R mechanism.

- ➤ The reaction of preadsorbed NH₃ with NO + O₂ on Mn-Sm/TiO₂ catalyst was significantly faster than that over Mn/TiO₂ catalyst;
- ➤ The Sm modified catalyst possessed more –NH₂ species than Mn/TiO₂ catalyst.

Adsorption and reaction of $NH_3 + NO + O_2$: In situ DRIFTS

- \triangleright The co-existence of the NH₃ ad-species and NO_x adspecies are observed;
- ➤ The reactive bridging nitrate and the -NH₂ and NH₄⁺ intermediates are all absent.

- ➤ The adsorption of NO can not happen in the presence of NH₃;
- ightharpoonup The formed $-NH_2$ species quickly reacted with gaseous NO to produce N_2 and H_2O .

Conclusions

- ➤ The best 20Mn-10Sm/TiO₂ catalyst achieved almost 85% NO conversion with a GHSV of 60000 h⁻¹ at 120 °C;
- The presence of Sm can improve the dispersion of manganese oxide and the relative concentration of surface oxygen (O_{α}) ;
- The SCR reaction mechanism changed by inhibiting the formation of bridging nitrate in the presence of Sm and the reactions can proceed only through Eley-Rideal mechanism;
- ➤ The enhanced oxygen transport after introduction of Sm boost the reaction rate.

THANKS FOR YOUR LISTENING!