Exergy analysis of a 1000MW single reheat supercritical CO$_2$ coal-fired power plant

Jing Zhou, Sheng Su*, Jun Xu, Kai Xu, Long Jiang, Yi Wang, Song Hu, Liang Liu, Peng Ling, Jun Xiang*

State Key Lab of Coal Combustion (SKLCC)  
Huazhong University of Science & Technology (HUST)
Outline

- Background
- Model & Methodology
- Results & Discussions
- Conclusions
Steam Rankine cycle (SRC)

S-CO₂ Brayton cycle

- Nuclear energy
- Solar energy
- Waste heat energy
- Coal-fired energy

Advantages:
- High thermal efficiency
- Excellent inheritance of materials
- Compact turbine size

S-CO₂ coal-fired power plants (SCO2PP) have a broad prospect of development and application
1、Background: Progress of SCO2PP development

2013 and 2016, Yann Le Moullec, initial concept design by EDF, France

- Conceptual design and economic evaluation
- Short cut design of the boiler: Reheat cooling wall (RCW) layout


2018, Jinliang Xu, by North China Electric Power University, China

- S-CO2 boiler module design: Partial flow strategy (PFS)
- Efficiency is further improved based on Energy analysis


Simplified schematic of double reheat S-CO2 boiler using Reheat cooling wall (RCW) layout

620°C/30MPa:

Overall plant net efficiency: 47.8%, 2.4% higher than traditional steam power plant (TSPP)

Schematic of double reheat S-CO2 power plants using Partial flow strategy (PFS) module design

Overall plant net efficiency: 48.3%
1、Background: Progress of S-CO2 coal-fired power plants development

2016, Yu Yang, by Xi’an Thermal Power Research Institute, China
- Numerical simulation of the coupled heat transfer between combustion and fluid heating
- Design of the heating surface of S-CO2 boiler

2018, our previous study, Jun Xiang, by SKLCC, China
- Parameter and configuration (Economizer and Compression) optimization based on exergy analysis
- A comprehensive optimized model for S-CO2 coal-fired power plant is established.


Schematic of a 300MW single reheat S-CO2 coal-fired power plant and temperature distribution of heating surface in S-CO2 boiler:

Reheat cooling wall (RCW) layout

Schematic of single reheat S-CO2 power plants using exergy analysis optimization:

Overall plant exergy efficiency: 45.4%, improved by 3.5% compared with TSPP
1. Brief summary

- S-CO2 Brayton cycle system remains undetermined
  System efficiency needs to be improved.

- Energy analysis Exergy analysis
  It can accurately characterize the work potential for high-parameter system.

- S-CO2 coal-fired power plants has potential for improvement
  Optimization method and strategy should be presented and analyzed.
2.1 Model

Traditional steam power plants (TSPP)

WW-LF: WaterWall of lower furnace
WW-UF: Cooling Wall of upper furnace
P-SH: Primary superheater/Primary reheater1
S-SH1: Screen superheater1/Screen reheater1
S-SH2: Screen superheater2
F-SH: Final superheater
F-RH1: Final reheater1
F-RH2: Final reheater2
P-RH1: Primary reheater1
P-RH2: Primary reheater2
ECO: Economizer
FGC: Flue gas cooler
APH-S: Secondary air preheater
APH-P: Primary air preheater

Table 1. The main parameters for the simulation of a single-reheat boiler

<table>
<thead>
<tr>
<th>Flue gas</th>
<th>Outlet temperature (°C)</th>
<th>Referred values (TSPP)</th>
<th>Simulation values (TSPP)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW-LF</td>
<td>-</td>
<td>1613.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WW-UF</td>
<td>-</td>
<td>1225.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-SH</td>
<td>503.6</td>
<td>500.8</td>
<td>0.6</td>
<td>-0.6</td>
</tr>
<tr>
<td>S-SH1</td>
<td>1139.8</td>
<td>1119.6</td>
<td>1.8</td>
<td>-1.8</td>
</tr>
<tr>
<td>S-SH2</td>
<td>1037.8</td>
<td>1020.6</td>
<td>1.7</td>
<td>-1.7</td>
</tr>
<tr>
<td>F-SH</td>
<td>938.2</td>
<td>923.7</td>
<td>1.5</td>
<td>-1.5</td>
</tr>
<tr>
<td>F-RH-H</td>
<td>805.5</td>
<td>794.3</td>
<td>1.4</td>
<td>-1.4</td>
</tr>
<tr>
<td>F-RH-C</td>
<td>839.9</td>
<td>828</td>
<td>1.4</td>
<td>-1.4</td>
</tr>
<tr>
<td>P-RH2</td>
<td>770.8</td>
<td>760.5</td>
<td>1.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>P-RH1</td>
<td>456.7</td>
<td>455.1</td>
<td>0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>ECO</td>
<td>358.9</td>
<td>358.5</td>
<td>0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>APH-S</td>
<td>128.5</td>
<td>127</td>
<td>1.2</td>
<td>-1.2</td>
</tr>
<tr>
<td>APH-P</td>
<td>128.5</td>
<td>130.3</td>
<td>1.4</td>
<td>-1.4</td>
</tr>
</tbody>
</table>

Less than 2% error

1000MW single-reheat traditional steam coal-fired power plant
2.1 Model

2. Basic single reheat S-CO$_2$ power plant (Basic SCO2PP)

- Material flow into the boiler
- Air flow into the boiler
- S-CO$_2$ flow into S-CO$_2$ cycle
- P-RH1
- ECO
- S-RH1
- P-RH3
- 50%
- 50%
- 50%
- 50%

30°C temperature pinch

Partial flow strategy (PFS) to reduce the pressure drop

Divide into two halves, and pressure drop decreases by 1/8

Heating length \( \downarrow \frac{1}{2} \quad \text{Mass flow} \downarrow \frac{1}{2} \)

S-CO$_2$ partial flow power plant (SCO2PFPP)

Waste heat utilization:
Cycle internal split flow (CISF) method

Boiler heating exchange surface layout:
Flue gas cooler (FGC) under Economizer (ECO)
4. SCO2PFPP+CTBC

Use this part of flue gas waste heat as the heat source of the bottom cycle

Waste heat utilization: Connected-Top-Bottom cycle (CTBC) method

Table 2. Simulation values of four different coal-fired power plants

<table>
<thead>
<tr>
<th>Items</th>
<th>TSPP</th>
<th>Basic SCO2PP</th>
<th>SCO2PFPP+ CISF</th>
<th>SCO2PFPP+ CTBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main inlet temperature into WW or CW / °C</td>
<td>332.0</td>
<td>467.7</td>
<td>451.0</td>
<td>451.0</td>
</tr>
<tr>
<td>T_{10} / °C</td>
<td>483.4</td>
<td>575.7</td>
<td>575.7</td>
<td>575.7</td>
</tr>
<tr>
<td>T_{10*} / °C</td>
<td>-</td>
<td>487.0</td>
<td>487.0</td>
<td>-</td>
</tr>
<tr>
<td>T_{11} / °C</td>
<td>361.7</td>
<td>361.7</td>
<td>361.7</td>
<td>361.7</td>
</tr>
<tr>
<td>Mass flow rate / tonnes·h⁻¹</td>
<td>3101.8</td>
<td>29184.0</td>
<td>27890.9</td>
<td>26416.4</td>
</tr>
<tr>
<td>Energy efficiency of the unit / %</td>
<td>43.2</td>
<td>45.7</td>
<td>47.6</td>
<td>49.1</td>
</tr>
</tbody>
</table>

Main inlet temperature into CW of SCO2PP increases by 100~150°C

Mass flow rate of SCO2PP is 8~10 times compared with TSPP
2.2 Methodology

◆ S-CO2 boiler system exergy analysis method:

Boiler system exergy balance equation:

\[ E_A + E_B + E_{s,in} + E_{R,in} = E_{s,out} + E_{R,out} + I_r + E_{fg} \]

Boiler system exergy efficiency:

\[ \eta^e_b = \frac{(E_{s,out} - E_{s,in}) + (E_{R,out} - E_{R,in})}{E_A + E_B} \]

Fuel exergy:

\[ e_f = LHV\left(1.0064 + 0.1519 \frac{H}{C} + 0.0616 \frac{O}{C} + 0.0429 \frac{N}{C}\right) \]

Heating exchange exergy loss:

\[ I^e_r = (E^{h}_{in} - E^{h}_{out}) - (E^{c}_{out} - E^{c}_{in}) = QT_0 \left(\frac{1}{T_c} - \frac{1}{T_h}\right) \]

Flue gas exergy loss:

\[ I_g = Q(1 - \frac{T_0}{T_h}) \]

◆ S-CO2 cycle system exergy analysis method:

S-CO2 cycle system exergy balance equation:

\[ E_{s,out} + E_{R,out} = E_{s,in} + E_{R,in} + \sum I_r + W \]

S-CO2 cycle system exergy efficiency:

\[ \eta^e_{sc} = \frac{W}{(E_{s,out} - E_{s,in}) + (E_{R,out} - E_{R,in})} \]
Outline

- Background
- Model & Methodology
- Results & Discussions
- Conclusions
3.1.1 Exergy distribution analysis of different 1000MW coal-fired power plants

Table 3. Exergy distribution analysis of different coal-fired power plants

<table>
<thead>
<tr>
<th>Items</th>
<th>Input exergy to the unit</th>
<th>Furnace combustion</th>
<th>Heat exchanger surface in boiler</th>
<th>Traditional steam cycle or S-CO₂ cycle</th>
<th>Others</th>
<th>Sum of exergy loss</th>
<th>Output effective exergy</th>
<th>Exergy efficiency of the boiler (%)</th>
<th>Exergy efficiency of the cycle (%)</th>
<th>Exergy efficiency of the unit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSPP Basic SCO2PP SCO2PFPP+CTBC</td>
<td>2444.8 2444.8 2444.8 2444.8</td>
<td>662.5 662.5 662.5 662.5</td>
<td>472.6 402.0 403.3 357.9</td>
<td>246.8 232.7 224.0 234.9</td>
<td>36.4 62.3 23.6 22.7</td>
<td>1418.3 1359.5 1313.4 1278.0</td>
<td>1027.0 1085.3 1131.4 1166.8</td>
<td>52.1 53.9 55.4 57.3</td>
<td>80.7 82.4 83.5 83.2</td>
<td>42.0 44.4 46.3 47.7</td>
</tr>
<tr>
<td>SCO2PFPP+CTBC</td>
<td></td>
</tr>
<tr>
<td>SCO2PFPP+CTBC</td>
<td></td>
</tr>
<tr>
<td>SCO2PFPP+CTBC</td>
<td></td>
</tr>
<tr>
<td>SCO2PFPP+CTBC</td>
<td></td>
</tr>
</tbody>
</table>

- SCO2PFPP(CTBC) has better comprehensive performance, including higher exergy efficiency of the boiler and S-CO₂ cycle due to its lowest exergy loss ratio of heat exchange surface.
- The exergy loss ratio of the S-CO₂ boiler system is as high as about 82%, in which the exergy loss ratio of the furnace combustion accounts for about 50% and the heat exchange surface for about 29%.
- The exergy loss of the heat exchange surface has more remarkable effect on the unit exergy efficiency.
3.1.2 Exergy analysis of the heating exchange surface between TSPP and basic SCO2PP

Compared with TSPP, the increase in exergy efficiency of basic SCO2PP is mainly due to the decreasing exergy loss ratio of the heat exchange surface.

- Exergy loss ratio of almost all the heat exchange surface of basic SCO2PP is lower than that of TSPP due to their relatively higher exergy efficiency, except Flue gas cooler (FGC).

- The exergy loss ratio of FGC is as high as 3.7%, which takes up relatively high proportion. And its exergy efficiency is lowest.

Fig. 2. Exergy analysis of the heating exchange surface between TSPP and basic SCO2PP
3.1.3 Exergy analysis of CISF and CTBC units

Between SCO2PFPP+CISF and SCO2PFPP+CTBC, the main variations occur in the heat exchange surface and the S-CO2 cycle.

- Exergy efficiency of the heat exchange surface between CISF and CTBC units is almost the same, except FGC.
- The exergy loss ratio of FGC in the CTBC unit suffers much lower than that of the CISF unit.
- The exergy loss ratio of HTR is the highest and takes up the majority of the S-CO2 cycle.
- Connected-bottom-cycle turbine (CBT) has relatively lower exergy efficiency compared with HPT and LPT in CTBC units, due to its lower inlet parameters.
3.2.1 ADFGC layout for SCO2PFPP+CISF

Optimization for SCO2PFPP +CISF

Optimization method:
Adjacent double flue gas cooler (ADFGC) layout

Analyze HTR separately

Split from the inlet high-pressure side of HTR
HTR temperature difference decrease
Improve HTR exergy efficiency

Exergy efficiency:48.22%
Improved by 1.94%

Fig. 5. The effect of the FGC split ratio on HTR performance

Fig. 6. The effect of the FGC split ratio on unit performance
3.2.2 SDFGC layout for SCO2PFPP+CISF

Optimization for SCO2PFPP +CTBC

Optimization method :
Staggered double flue gas cooler (SDFGC) layout

Exergy efficiency: 47.95% (600℃)

Fig. 7. The effect of CBT inlet temperature on unit performance
A comprehensive exergy analysis and optimization method for S-CO2 partial flow power plant (SCO2PFPP) using cycle-internal-split-flow (CISF) and connected-top-bottom-cycle (CTBC) method are constructed.

- The exergy loss ratio of S-CO2 power plants units from high to low is mainly concentrated on furnace combustion, furnace heat transfer surface, followed by S-CO2 cycle and exhaust gas waste heat.

- The CISF and CTBC method can solve the waste heat utilization of the S-CO2 boiler. However, the exergy loss of FGC and HTR takes up considerably high percentages in CISF unit and connected-bottom-cycle turbine (CBT) has relatively lower exergy efficiency in CTBC unit.

- For optimization of SCO2PFPP+CISF, an innovative adjacent double flue gas cooler (ADFGC) layout is presented. The unit exergy efficiency is 48.22%, improved by 1.94%.

- For optimization of SCO2PFPP+CTBC, an innovative staggered double flue gas cooler (SDFGC) layout is presented. The unit exergy efficiency is 47.95% as the CBT inlet temperature is 600°C.
Acknowledgments

The authors would like to acknowledge the support from the National Key R&D program of China (No. 2017YFB0601802) and National Science Foundation of China (NSFC) (Nos. 51576081, 51576086) for this research.

Thanks for listening!
A: Model input parameter and logic framework

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPT inlet pressure/temperature</td>
<td>274 bar/605°C</td>
</tr>
<tr>
<td>LPT inlet pressure/temperature</td>
<td>177 bar/603°C</td>
</tr>
<tr>
<td>MC1 inlet flow pressure/temperature</td>
<td>76 bar/32°C</td>
</tr>
<tr>
<td>MC2 inlet flow pressure/temperature</td>
<td>90 bar/32°C</td>
</tr>
<tr>
<td>Optimum split ratio to BC</td>
<td>0.28</td>
</tr>
<tr>
<td>Components' pressure drop of S-CO2 cycle</td>
<td>0.1</td>
</tr>
<tr>
<td>Superheat or reheat exchange surface’s pressure drop in boiler</td>
<td>1.0</td>
</tr>
<tr>
<td>Compressor isentropic efficiency</td>
<td>89.00%</td>
</tr>
<tr>
<td>Compressor motor efficiency</td>
<td>99.60%</td>
</tr>
<tr>
<td>Turbine isentropic efficiency</td>
<td>93.00%</td>
</tr>
<tr>
<td>Recuperator pinch temperature difference</td>
<td>5°C</td>
</tr>
<tr>
<td>Flue gas and CO2 pinch temperature difference</td>
<td>30°C</td>
</tr>
<tr>
<td>Flue gas outlet temperature</td>
<td>129°C</td>
</tr>
</tbody>
</table>

Table 1. Main input parameters during the simulation of the single-reheat S-CO2 power plants

Input: $T_5$, $P_5$, $P_6$, $P_{\text{HTR}}$, $P_{\text{LTR}}$, $P_{\text{Heater}}$, $P_{\text{Cooler}}$, $T_1$

Calculate $P_5$: $P_2=P_5+P_{\text{HTR}}+P_{\text{LTR}}+P_{\text{Heater}}$;
Calculate $P_1$: $P_1=P_6-P_{\text{HTR}}-P_{\text{LTR}}-P_{\text{Cooler}}$;
Calculate $P_2$: $P_2=P_3+P_{\text{LTR}}$;
Assume $T_8$; $HTR$ hot stream outlet temperature $T_7$ is calculated to equalize mixing flow temperatures at point 3.
The split flow ratio before the point 8 is then fixed to make the temperature difference $(T_7-T_3)$ equal to the HTR temperature-pin奇 chosen value.
The split flow ratio before the point 8 is then fixed to make the temperature difference $(T_7-T_3)$ equal to the HTR temperature-pin奇 chosen value.
Calculate each point temperature on the high pressure side of LTR: $T_i=T_i-T_1+Q_i/m_{\text{CO}_2c_p(1-x)}$;
Calculate each point temperature on the low pressure side of LTR: $T_j=T_j-T_1+Q_i/m_{\text{CO}_2c_p}$;
Calculate $\Delta T_{\text{LTR}}$: $\Delta T_{\text{LTR}}=T_7-T_2$;
$\Delta T_{\text{LTR}}$, min $= LTR$ temperature-pin奇 chosen value?

N

Y

Adjusting the mass flow rate of the cycle to ensure the boiler heat duty equal to traditional steam boiler, and assign heat to each heat exchange surface.

End