Mixed Ionic-Electronic Conductors for their Application in Oxygen Transport Membranes Dr. Jose M. Bermudez, Dr. Marcos Millan Chemical Engineering Department, Imperial College London, UK 1 # Introduction # Introduction # Introduction High energy penalty # Introduction **Objective** Study the thermochemical stability under close to real operation conditions of a series of MIECs with high potential for being used in 4-end modules of OTM for oxy-fuel combustion processes # **Experimental** Single phase - reference **Dual phase** LSCF La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃ 15 dual phase material Temperature: 850-900 °C TOS: 8 h Simulated gas stream 98-100% CO_2 d.b. 0-2000 ppm SO_2 d.b. 0-30% H_2O $$\begin{split} & \text{CGO-FCO 60/40 and 85/15} - \text{Ce}_{0.8} \text{Gd}_{0.2} \text{O}_2 - \text{FeCo}_2 \text{O}_4 \\ & \text{YSZ-MCO} - \textit{Sc/Y-doped ZrO}_2 - \textit{MnCo}_2 \text{O}_4 \\ & \text{YSZ-AZO} - \textit{Sc/Y-doped ZrO}_2 - \textit{Zn}_{0.98} \textit{Al}_{0.02} \text{O}_{1.01} \\ & \text{YSZ-LCM} - \textit{Sc/Y-doped ZrO}_2 - \textit{La}_{1.0} \textit{Cr}_{0.9} \textit{Mg}_{0.1} \text{O}_3 \\ & \text{YSZ-LCCN} - \textit{Sc/Y-doped ZrO}_2 - \textit{LaCr}_{0.85} \textit{Cu}_{0.01} \textit{Ni}_{0.05} \text{O}_3 \\ & \text{NFO-CTO} - \text{Ce}_{0.8} \text{Tb}_{0.2} \text{O}_2 - \text{Ni}_2 \text{FeO}_4 \\ & \text{NFO-CTO} + \text{Catalysts} \end{split}$$ # Results LSCF La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃ - LSCF is unstable in all conditions - CO₂ gives rise to SrCO₃ and SO₂ gives rise to SrSO₄ - Co and Fe were segregated as oxides - Competitive reactions between LSCF and CO₂/SO₂, with SO₂ been stronger # Results YSZ-MCO 70-30 Sc₂O₃/Y₂O₃/ZrO₂-MnCo₂O₂ - Electronic conductor (MCO spinel) unstable against CO₂ and high concentrations of SO₂ - CO₂ promotes segregation of Co - SO₂ gives rise to the formation of sulphates # Results CGO-FCO 60-40 Ce_{0.8}Gd_{0.2}O₂-FeCo₂O₄ - Electronic conductor (FCO spinel) unstable against CO₂ - CO₂ promotes segregation of Co and Fe - Low impact on the O₂ transport: ionic conductivity is the limiting factor # Results YSZ-AZO 50-50 $Sc_2O_3/Y_2O_3/ZrO_2-Zn_{0.98}AI_{0.02}O$ - Electronic conductor (doped ZnO) and ionic conductor (Y-Sc stabilized ZrO₂) are stable against CO₂ and SO₂ - Raman, XRF, Elemental Analysis and SEM (coupled with EDS and WDS) confirmed the stability ## Results CTO-NFO $Ce_{0.8}Tb_{0.2}O_2$ - Ni_2FeO_4 - Electronic conductor (spinel) and ionic conductor (doped CeO₂) are stable against CO₂ and SO₂ - Raman, XRF, Elemental Analysis and SEM (coupled with EDS and WDS) confirmed the stability • Tested as catalyst in asymmetric membranes ## Conclusions - Single phase MIECs are not stable under CO₂/SO₂ atmospheres - Certain materials show a competitive interaction with CO₂ and SO₂ - Electronic conductors are less stable, but in certain cases this has low impact on the oxygen transport - Certain materials have shown high stability under all the conditions studied and present the potential of being used in OTM for oxyfuel combustion processes # Thank you for your attention Dr. Jose M. Bermudez Dr. Marcos Millan