

Chemical Engineering
Imperial College Londor
London

10 10010

Why use ionic liquids for lignocellulosic biofuels?

- Increase enzyme activity at minimal cost
 - Several options (kraft, ammonia, organosolv, etc.)
 - Ionic liquids provide highest activity
 - Ionic liquids are generally very expensive
- Ionic liquids are just organic salts
 - Have advantages over organic solvents
 - Can be designed for a specific function
 - Have disadvantages also
- The application must be logical
 - Rational choices must be made

ionoSolv lignin extraction

- Most ILs are not good solvents for cellulose
 - Biocatalytic conversion of cellulose to fuels
 - Want de-lignified cellulose
- ionoSolv: Dissolve lignin not cellulose
 - Highly pure cellulose easily recovered
 - Lignin solution for chemical conversion

lonosoly process

Lignin

- Water helps the process
- Do salts have to be expensive?

Brandt et al., Green Chem., 15, 550 (2013)

Process economics – IL cost are critical

- Other important factors
 - Recycling rate
 - Biomass loading

Klein-Maruschamer et al., Biofuels, Biproducts, Biorefining, 5, 562 (2011)

Can Ionic Liquids be Cheap?

- [C₄C₁im][NTf₂] (Sigma-Aldrich):
 - \$2500/kg (250g)
- Ethaline (Scionix):
 - \$60/kg (50kg)

- \$40/kg (100t)
- [C₂C₁im][acetate]
 - \$60/kg (bulk guesstimate)
- [C₁Him][HSO₄]
 - \$2.60/kg (bulk estimate)
- [(C₂)₃NH][HSO₄]
 - \$0.84/kg (bulk estimate)
- [(C₄)(C₁)₂NH][HSO₄]
 - \$0.44/kg (bulk estimate)
- Acetone: \$1.30/kg

Chen et al., Green Chem., 16, 3098 (2014)

How NOT to make a Green solvent

Waste in every step!

Cost = \$2500/kg; E-factor > 100

Jessop, Green Chem., 13, 1391 (2011)

How to make a Green solvent

Cost = €1/kg; E-factor < 0.1

Fewer steps = lower cost = less waste

Chen et al., Green Chem., 16, 3098 (2014)

Material flow diagram

Fun facts about the cellulose

- We typically get ca. 96% glucan recovery (relative to native biomass)
 - 5% of the glucan is in the hemicellulose
- Max saccharification yields (rel. to native)

Miscanthus: 96%

- Willow: 90%

- Pine: 100%

Most 'pure' cellulose pulp

ca. 94% glucan

- 1 h, 150 C, 20% solids Gschwend et al., Green Chem., 20, (2018), accepted

Results – Particle size

100.9 100 90.6 88.9 90 80 70 60 **≈** ⁵⁰ 40 30 20 12.1 10.5 10.2 10 medium fine coarse Biomass particle size during treatment

■ Glucan recovery in pulp ■ % lignin remaining

Results - Scale up

Max sacch. yields at 20% (50%) solids

Miscanthus: 96% (78%)

- Willow: 90% (??)

- Pine: 100% (**82%**)

Comparison of economics with other technologies

	Virgin wood/ton
District of	100,000 1
Plant size	100,000 tpa
Solvent	£11
Biomass	£52
Water	£ 4
Capital	£25
Energy	£51
COST	£142
Cellulose	£ 84
Lignin	£ 88
Hemicellulose	£ 36
VALUE	£207
NET	£ 65
MARGIN	46%

- •Compared to (dilute acid pretreatment
- 30% lower capital costs
- 40% higher product value
- 100% larger profit margin

Glucose can be sold at €0.16/kg Also lower energy costs per ton of sugar than steam explosion

- Higher solids loading possible
 - (based here on 20%)
 - 100% sugar release from grasses or softwoods at 10% solids loading
 - 80% sugar release from softwoods at 50% solids loading
- Less phase change = less cost

Brandt et al., Green Chem. 2017, 19, 3078-3102.

Process Flow Scheme

IL recovery and recycling

- Very high IL stability (>330 C)
- 99.5 +/- 1% IL recovery
- ca. 100% lignin recovery
- No inorganic salt buildup

IL Recovery (%)

1st use 99.0 ±3.7

2nd use 97.9 ±1.7

3rd use 99.4 ±8.4*

4th use 99.3 ±0.9

* error due to mixing two replicates during

Fresh IL

After 1st use

After 4th use

of light continue of the state of the state

pulp washing

Precipitate yield → Lignin extraction Brandt *et al.*, *Green Chem.*, **19**, 3078 (2017)

Feedstock doesn't matter?

High Biomass loadings

Saccharification yield

Loading	with air drying	without air drying	✓ Higher yields if pulp drying is avoided
10%	64.8±3.5%	99.2±1.9%	✓ Larger impact at high loadings
50%	34.4±3.2%	74.9±2.9%	✓ Multiple feedstocks combined

Metal-containing waste wood

- ✓ Extraction of Cu, Cr and As
- ✓ Recovery of the metals through electro-plating
- ✓ High sugar yields

- √ 60 Mt/y US; 70 Mt/y EU
- ✓ Cannot be incinerated for biopower
- ✓ UK: £130/t for landfilling

OK, So It Works

Any Waste Wood?

You don't get to choose what is in waste!

Waste wood to fuels & materials

Contributing to circular economy

- Use post-consumer waste wood as very cheap (negative) feedstock for biorefinery
- Use low-cost ionic liquid process to:
 - Save environment: divert from landfill and remove heavy and toxic metals
 - Make fuels & chemicals: fractionate decontaminated waste wood to cellulose & lignin

Waste wood to fuels & materials

Contributing to circular economy

- Use waste wood as very cheap (negative) feedstock for biorefinery
- Use low-cost ionic liquid process to:
 - Save environment: divert from landfill and remove heavy and toxic metals
 - Make fuels & chemicals: fractionate decontaminated waste wood to cellulose & lignin

Feedstock-controlled economics?

	Waste wood/ton	Virgin wood/ton
Plant size	20,000 tpa	100,000 tpa
Cellulose	£ 90	£ 90
Lignin	£ 94	£ 94
Hemic/Furfural	£ 38	£ 38
Gate fee	£ 54	-
REVENUE	£ 276	£ 222
Solvent	£ 11	£ 11
Biomass	-	£ 56
Water	£ 4	£ 4
Capital	£ 43	£ 26
Energy	£ 55	£ 55
COST	£ 113	£ 152
PROFIT	£ 163	£ 70
GROSS MARGIN	59%	32 %

Onward to bioderived plastics!

Conclusions

- Ionic liquids do not have to be expensive
 - Targeted applications still possible
 - Use common sense when designing
- Delignification of biomass
 - Simple process
 - Stable, recoverable, recyclable solvents
 - High solids loadings possible
- Recycling improves performance
- Economics-driven approach to solvent design
 - Can be application specific

Engineering and Physical Sciences Research Council

Supergen

Bioenergy

THE **ROYAL SOCIETY**

Imperial College London