THE FUEL AND ENERGY RESEARCH FORUM

Wednesday 11th April 2018 – University of Sheffield

EU Funded Project: Innovation and Networks Executive Agency (INEA) – Grant Agreement 727734

NanoMaterials Enhanced Membranes for Carbon Capture

Dr Karen N Finney, Energy 2050, University of Sheffield with Prof Mohamed Pourkashanian and Dr Muhammad Akram

CONTENTS

- Introduction to NanoMEMC²
- Project partners
- Overview of work programme
- Research results so far
- PACT facilities at Sheffield
- Membrane testing at PACT
- Concluding remarks

The NanoMEMC² project is funded by the European Commission through the European Union's Horizon 2020 Research and Innovation programme

NanoMEMC² INTRODUCTION

- Nano-material enhanced membranes for carbon capture
- Membrane separation can be applied to CO₂ capture processes:
 - pre-combustion (CO₂-H₂/CO₂-CH₄ separation)
 - post-combustion (CO₂-N₂)
 - o oxyfuel-combustion (O₂-N₂)
- Membrane separation can be applied to a range of carbon-intensive industry sectors
- Compared to other capture methods, membrane-based separation can potentially be highly flexibility, with lower operating costs
- Current materials lack the separation performance and durability needed for an efficient and economically feasible exploitation of such technology

NanoMEMC² INTRODUCTION

- The NanoMEMC² research aims to overcome current limitations by focusing on the development of innovative CO₂ selective membranes with high flux and selectivity, suitable for application to both pre and post-combustion capture processes
- Various materials will be manufactured and functionalized:
 - nanofibrillated cellulose (NFC)
 - graphene (G)
 - graphene oxide (GO)
- These will be used to form two different types of membranes:
 - novel facilitated transport hybrid membrane (FTHM)
 - o continuous phase hybrid membrane (CPHM)

BACKGROUND, AIM & GOAL

MEMBRANES:

selectivity vs. permeability capture ratio vs. gas purity energy costs vs. membrane area

AIM: to contribute to the real, effective deployment of CCS technologies by reducing the cost and energy penalty of CO₂ capture through the development and optimal integration of innovative membranes within different energy-intensive processes

GOAL: to fully develop the potential of membranes in the selective capture of CO₂, increasing the efficiency of the capture and reducing the overall CCS cost below the value of €40/t of CO₂ avoided

PROJECT PARTNERS

Project Coordinator: Dr Marco Giacinti Baschetti Alma Mater Studiorum - Università di Bologna

WORK PROGRAMME

WP7: Dissemination and exploitation of results

MEMBRANE SCENARIOS

POWER PRODUCTION: natural gas

- conventional NGCC (BAU)
- NGCC + post-combustion capture
- raw-hydrogen-fuelled CCGT + precombustion capture

<u>POWER</u> PRODUCTION: coal integrated gasification combined cycle

- IGCC with acid removal using Selexol (BAU)
- IGCC with acid removal and precombustion CCS

INDUSTRY: hydrogen production by steam methane reforming (SMR)

- conventional SMR plant (BAU)
- SMR plant with post-combustion carbon capture
- SMR plant with pre-combustion carbon capture from syngas
 (burners: NG- + H₂-fired)

INDUSTRY: cement production

- conventional dry kiln cement plant (BAU)
- dry kiln cement plant with postcombustion capture

RESULTS SO FAR

The research has focused on WP2, 3, 4 and 5

Raw Material Acquisition

& Assembly

RESULTS SO FAR

- PVA-based membranes:
 - fillers: G and NFC
 - polymer: polyvinylamine (CO₂ selective polymer) at different degrees of purification
 - casting: solution casting in water
 - thickness: 60 μm
 - test conditions: 35 °C, 1 bar upstream, single humid gas
- Characterisation and testing for permeability and selectivity for over
 50 first generation membranes using NFC, G and GO

RESULTS SO FAR

- Molecular modelling facilitated transport membranes
 - analyse/quantify interactions between CO₂ and membrane materials and develop structure-property associations
 - predictive tools for inside modules as a function of conditions
- Process design, optimisation and assessment scenario analysis and development for baseline and membrane integrated models

- solvent = n/a
- $\eta_{1HV} = 59.1\%$
- EP = 0.0 % points
- CPR = 0.0%
- overall efficiency (%)

NGCC BC (post-CCS)

- solvent = MEA-based
- $\eta_{\text{LHV}} = 51.2\%$
- EP = 7.9 %points
- CPR = 90.0%
- solvent = Selexol
- $\eta_{LHV} = 43.3\%$
- EP = 15.9 %points
- CPR = 80.2%
- energy penalty (%pt) capture rate (%)

MEMBRANE TESTING AT PACT

comprehensive baseline tests with CO_2 - N_2 for benchmarking over the whole range of operational regimes

Measurements for:

- compositions
- flowrates
- temperatures
- pressures

PACT AT SHEFFIELD

PACT

MEMBRANE TESTING AT PACT

membrane integration with gas turbine

membrane with GT and CO₂ injection

membrane with coal/biomass fuels

membrane integration synthetic gas skid (industrial separation)

CONCLUDING REMARKS

VALUE CHAIN

SUPPLIER

materials produces, CO_2 suppliers

PROCESS DEVELOPER

industrial/engineering consultants, EPC engineering procurement, construction

END USERS

power, steel/cement plants, oil refineries, manufacturing industry

INFLUENCERS

policy makers, local communities, association, etc.

The NanoMEMC² project is now generating significant exploitable results, used for dissemination activities and extensive stakeholder engagement throughout the value chain

CONCLUDING REMARKS

Sign up for our newsletter on the NanoMEMC² website:

www.nanomemc2.eu

THE FUEL AND ENERGY RESEARCH FORUM

Wednesday 11th April 2018 – University of Sheffield

Dr Karen N Finney [k.n.finney@sheffield.ac.uk]

Thank you to all of the NanoMEMC² project partners for their inputs to this presentation