Use of Challenging fuels for the UK Low-Carbon Energy Transition

Laura Herraiz^{*}, Charithea Charalambous, Vitali Avagyan, Mathieu Lucquiaud, Hannah Chalmers School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JL, UK

(*) L.Herraiz@ed.ac.uk

THE UNIVERSITY of EDINBURGH School of Engineering

Institute for Energy Systems

Opening New Fuels

12th ECCRIA Conference Cardiff University, Cardiff, UK, 5th-7th September 2018

Outline

- Introduction
- Biomass combustion options
- Biomass combustion technologies
- Comparison of Biomass combustion technologies based on performance criterion
- UK Policy incentives and support mechanisms
- Biomass fuel opportunities for energy generation in the UK
- Unit Commitment and Economic Dispatch (UCED) Model
- Conclusions

Introduction

- Biomass combustion is a cost-effective way to contribute to achieve greenhouse gas emission reduction targets and to increase the share of renewable energy sources in low-carbon energy systems.
- Biomass plants will contribute to security of electricity supply and provide flexible energy generation.
- **Challenging fuels**, such as waste wood from municipal, commercial, industrial construction and demolition waste streams, can be used to **decarbonise the energy and industrial sectors**, contribute to more **diversified fuel chain** and **reduce carbon impact of waste management**.
- Bioenergy with Carbon Capture and Storage (BECCS) promotes the net removal of CO₂ from the atmosphere (negative emission technology). A milestone from 2030 to 2050 would require one out five biomass fired power plant to be equipped with CCS [1,2]

Introduction

Biomass feedstock

Woody biomass and wood waste

- Availability and security of supply
- Thermal properties & composition

Regulations, Policy incentives & support mechanisms

- Regulations & taxes on CO₂ emissions (EPS, CFP)
- Incentives on Feedstock, generation and market (e.g. ROCs, FIT, CFD, CM) Reduce uncertainty for investment in renewable energy

Combustion Technologies

- Existing or new build plant
- Electricity or Co-generation (CHP)
- Capacity & Efficiency
- Biomass fuel characteristics

Investment decisions & Operation Strategies for Biomass plants deployment

Technical analysis

- Models based on fundamental principles and experimental work
- Practical experience

Opportunities in the UK

Existing and planned biomass co-firing and dedicated power plants and CHP

Economic analysis

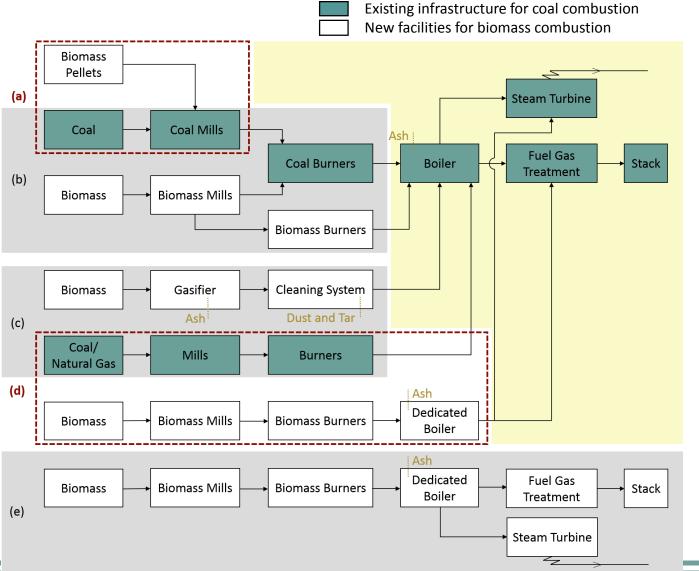
• Unit Commitment and Economic Dispatch (UCED) models

Biomass combustion options

Direct co-firing

- Biomass is milled and fed to the furnace using existing coal mills and combustion system (a),
- Dedicated biomass milling system (b) and biomass burners (b), biomass is milled to sizes suitable for suspension firing and is injected into new/modified burners.

Indirect co-firing (c)

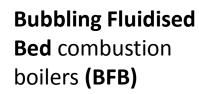

• Gasification of solid biomass in a gasifier. Syngas is fired in the existing boiler or in a dedicated boiler.

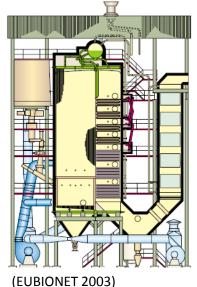
Parallel co-firing (d)

• A new dedicated boiler is installed to produce steam used in the coal- or gas-fired power plant.

Dedicated biomass firing(e)

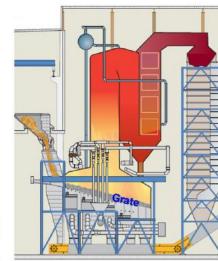
• A new dedicated biomass plant is constructed.


Biomass combustion options


O	otions	Plant Efficiency	Operation Experience	Biomass Fuel Flexibility	Security of Supply	Ash Deposition	Emissions	Capital Cost	Development Status
(a)	Direct	Reduced (for moderate co-firing levels)	High (large-scale application)	Low (limited level of co-firing; lack of fuel flexibility)	Suited (if there are uncertainties for security of biomass supply)	Ash deposition (e.g., slagging and fouling, corrosion)	Lower SO ₂ , NO _x and CH ₄ (lower sulphur and nitrogen content in biomass; avoided CH ₄ from landfills)	Low (existing infrastructure)	Commercial [3]
(q)	Direct	Reduced (for moderate co-firing levels)	High (large-scale application)	Low (higher level of co- firing than (a); lack of fuel flexibility)	Suited (if there are uncertainties for security of biomass supply)	Ash deposition (e.g., slagging and fouling, corrosion)	Lower SO ₂ and NO _x (lower sulphur and nitrogen content in biomass)	Lower capital investment for	nmercial [3]
(c)	Indirect	Reduce 10% cr expe	rience for t co-firing	Moderate (higher level of co-firing than (a)-(b); wide range of biomass; flexible use of gas fuel, e.g., coal, oil, gas)	Partially unsuited (part of the plant depends on biomass supply)	Reduced boiler slagging (biomass is not directly fed into the boiler)	Yet to be determined [4]	direct co-firing gas cleaning and filtering equipment)	Demonstration [3]
(q)	Parallel	Reduced (by 1.5% at 10% co-firing [5]; optimal efficiency of each fuel can be chosen)	Low (lack of experience with co- firing and testing [5])	High (higher co-firing ratios than (a)-(c);	Can be used t burn a wider ra of fuels		Less (serves as a gas- over firing designed to minimise NO _x [6,7])	Higher than (a)-(c) (additional infrastructure is needed)	Early Commercial [3]
(e)	Dedicated	Optimal efficiency (new plant)	High (small-scale application)	High (flexible use of problematic fuels with high alkali and chlorine contents, e.g., wheat straw)	Unsuited (fuel supply depends 100% on fuel supplier)	Only biomass ash deposition	Net CO ₂ emissions (offers the option for negative CO ₂ emissions)	High (new installation)	Commercial (steam Rankine cycle [3])

Biomass combustion technologies

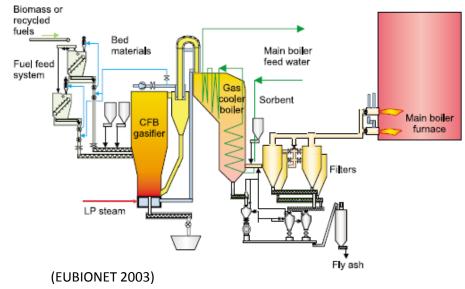
In addition to Pulverised Fuel Systems (PFS), the main combustion installations used nowadays are:



Circulating Fluidised Bed combustion boilers (CFB)

(EUBIONET 2003)

Packed Bed (PB) /


Moving-grate furnaces and underfeed stokers with rotary grates

(Yin et al. 2008)

Biomass Gasifier (GF)

(atmospheric fluidised bed gasifier with flue gas cleaning system)

Biomass combustion technologies

More favorable

Less favorable

	Output [MW _e]	Efficiency	Biomass Fuel Flexibility	Fuel Moisture Range	Particle Size	Investment Cost
Co-firing in Pulverised Fuel System (PFS)	High (10-1000 MW _e [8])	High (35–40% [9] ¹)	LOW (fuel: sawdust and fine shavings)	Low (limited to <15 wt% [10])	Low (limited to <5 mm [8,10])	LOW (cost reported <1000 USD/kW [11])
Firing in PFS	High (10-650 MW _e [8])	High (35–40% [9])	LOW (fuel: sawdust and fine shavings)	LOW (limited to <15 wt% [10])	Low (limited to <5 mm [8,10])	Moderate (cost reported <4000 USD/kW [11])
Circulating Fluidised Bed (CFB)	Moderate (15-300 MW _e [8])	Moderate (31.4–36.5% [10])	Moderate (fuel: bark, woodchips, sludge)	High (10-50 wt% [10])	Moderate (<72 mm [10])	Moderate (cost reported <4000 USD/kW [10])
Bubbling Fluidised Bed (BFB)	Moderate (5-120 MW _e [8], lower than CFB)	Low (28–30% [10])	High (fuel: bark, woodchips, sludge, etc. ²)	High (10-50 wt% [10])	Moderate (<72 mm [10])	High (cost reported <5000 USD/kW [10])
Packed Bed – Grater (PB)	Moderate (0.15 - 150 MW _e [8])	Moderate (30–35%)	High (fuel: wide range of biomass)	High (10-50 wt% [10])	High (<150 mm [8])	High (cost reported <5000 USD/kW [10])
Gasifier (GF)	Low (<20 MW _e [10])	Low (25–30%)	Moderate (fuel: sludge, woodchips, rice hulls)	High (15-50 wt% [10])	High (<100 mm [10] – lower than PB)	High

¹ The levels of efficiency can be maintained in case of small co-firing ratios. Power plants with power output <50 MW_e and either firing or co-firing biomass with coal have efficiencies 25-30% [9]. ² Biomass fuel in BFB: bark, woodchips, sludge, bagasse, low alkali content fuels, mostly wood residues with high moisture content.

Note: Colours, from light green (low value) to dark green (high value), indicate the performance of the common biomass combustion technologies based on identified key features.

Biomass combustion technologies

More favorable

Less favorable

	Οι	utput [MW _e]	Efficiency	Biomass Fuel Flexibility	Fuel Moisture Range	Particle Size		Investment Cost	
Co-firing in Pulverised Fuel System (PFS)	Pulverised Fuel High		High (35–40% [9] ¹)	LOW (fuel: sawdust and fine shavings)	Low (limited to <15 wt% [10])	Low (limited to <5 mm [8,10])		Low (cost reported <1000 USD/kW [11])	
Firing in PFS	(1	High .0-650 MW _e [8])	High (35–40% [9])	LOW (fuel: sawdust and fine shavings)	LOW (limited to <15 wt% [10])	Low (limited to <5 mm	pre	-firing and firing in PFS sent smaller investment	
Circulating Fluidised Bed (CFB)	Fluidised Bed)])	Moderate (fuel: bark, woodchips, sludge)	High (10-50 wt% [10])	Moderate (<72 [10])		t, yet a pre-treatment of ne biomass is required (cost reported <4000 USD/kW [10])	
Bubbling Fluidised Bed (BFB)	(plants might smaller scale fuel su	e to ensure	High (fuel: bark, woodchips, sludge, etc. ²)	High (10-50 wt% [10])	Moderate (<72 m [10])	ım	High (cost reported <5000 USD/kW [10])	
Packed Bed – Grater (PB)	(0.:	Moderate 15- 150 MW _e [8])	Moderate (30–35%)	High (fuel: wide range of biomass)	High (10-50 wt% [10])	High (<150 mm [8]	;])	High (cost reported <5000 USD/kW [10])	
Gasifier (GF)		Low <20 MW _e [10])	Low (25–30%)	Moderate (fuel: sludge, woodchips, rice hulls)		High (<100 mm [10] FB, BFB, PB, GF can		used to burn a	
¹ The levels of efficiency can be maintained in case of small co-firing ratios. Power plants with power output <50 MW _e and eit ² Biomass fuel in BFB: bark, woodchips, sludge, bagasse, low alkali content fuels, mostly wood residues with high moisture cor <i>Note</i> : Colours, from light green (low value) to dark green (high value), indicate the performance of the common biomass cor <i>Note</i> : Colours, from light green (low value) to dark green (high value), indicate the performance of the common biomass cor <i>Note</i> : Colours, from light green (low value) to dark green (high value), indicate the performance of the common biomass cor									

Comparison of combustion technologies based on performance criterion

Qualitative analysis: (++), Exceeds Requirements; (+), Meets Requirements; and (–), Less Favourable.

Performance Criterion	Co-firing in PFS	Firing in PFS	Firing in CFB	Firing in BFB	Firing in PB	Firing in GF
Economic-related Criteria						
Investment cost	++	+	+	-	-	-
O&M cos	Higher risk of slagging,	-	Ash is separat	ed in the boiler	++	+
Emission-related Criteri	fouling and corrosion			are reduced		
Pollutant gas emissions		+	++	++	++	++
Ash deposition	_	++	++	++	++	++
Fuel-related Criteria						
Fuel flexibility and availability	+	-	++	++	++	++
Fuel pre-processing	-	_	++	++	++	++
Operation-related Criteria			Can acc	ent a wide range	of hiomass fuels	and
Operational experience	++	++	Can accept a wide range of biomass fuels and allow the combustion of untreated biomass fuels			
Global market	++	++	тт	<u> </u>	тт	_
Load response/flexibility	-	_	++	++	-	-
Plant-related Criteria			PFS prese	nt higher efficiend	cy for power gene	eration,
Plant efficiency	++	++		B and Grate boile		
Thermal fuel input	++	++	•	chieving high ove	•	
Retrofit for CCS	++	++	++	+	+	+
EfW and CHP	-		++	++	++	+

UK policy incentives and support mechanisms

GHG emissions reduction:

- EU Emission Trading System
- Renewable Energy Directive (2009/28/EC)
- *Energy Efficiency Directive* (2012/27/EU) Energy recovery from waste:
- Landfill of waste Directive (1999/31/EC)

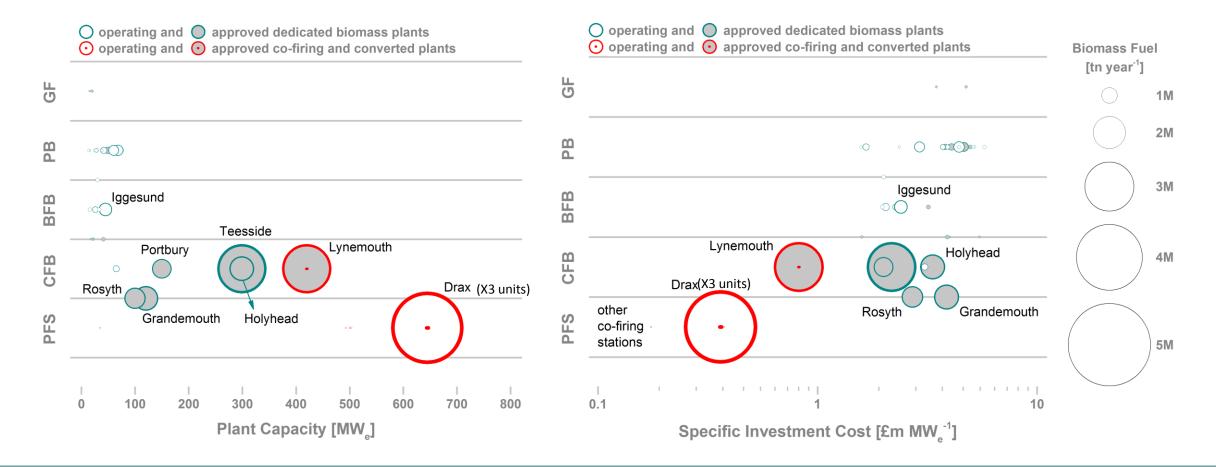
Biomass Power and CHP plants must comply with:

- *Industrial Emissions Directive* (IED 2010/75/EU) establishes limit values on industrial pollutant emissions (including large combustion plants >50MWe)
- Waste Incineration Directive (WID within IED Annex VI) applies to facilities burning "treated" wood wastes, i.e. Grade C and D.
- Carbon Price Floor, CPF (aims to ensure Carbon price at a level that drives low carbon investment)
- Emissions Performance Standard, EPS (sets emissions level limits at 450 gCO₂/kWh for new plants or boilers > 50MWe)
- Levy Control Framework, LCF (designed to control the costs of supporting low carbon electricity)

Policy incentives:

Generation & Market

- Renewable Obligation Certificates (ROCs), 2002
 Banded in 2009. Closed to new generation in 2017
 - Feed in Tariff (FIT), 2010
 - Renewables Heat Incentives (RHI), 2011


Electricity Market Reform (EMR) in 2013

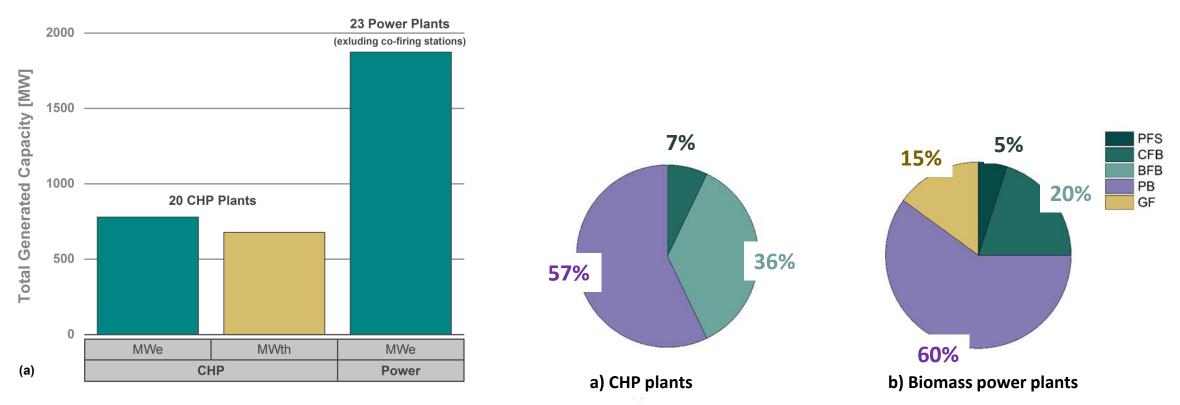
- Feed in Tariff (FIT) up to 5 MWe
- FITs Contract for Difference (CFD) -> 100% biomass CHP plants
- Capacity Market (CM)

Feed stocks

- Energy Crop Scheme (ECS)
- WRAP covers *waste gate fees* for a range of waste fuels

Existing and planned biomass plants for Power and Co-generation

Existing and planned biomass only plants for Power generation and Co-generation



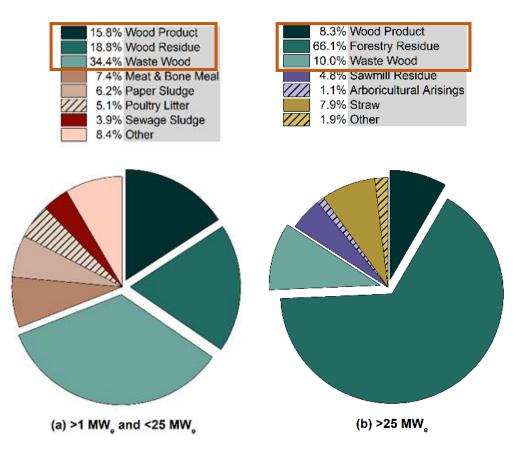

Figure 2. Total power (MW_e) and thermal (MW_{th}) installed capacity for dedicated biomass CHP and power plants

Figure 3. Type and proportion of combustion technologies used for dedicated biomass CHP and power plants

Biomass fuel: waste wood

- Waste wood resources can provide an alternative energy feedstock, increases fuel diversity and minimises waste disposal to landfill.
- Waste wood represents between 10% and 34.4% of the solid biomass burnt in the UK. The percentage depends on the plant thermal input and the combustion technology.
- In the UK, more than 20 power stations (> 20 MW_e) use waste wood, either alone or in combination with clean white wood.

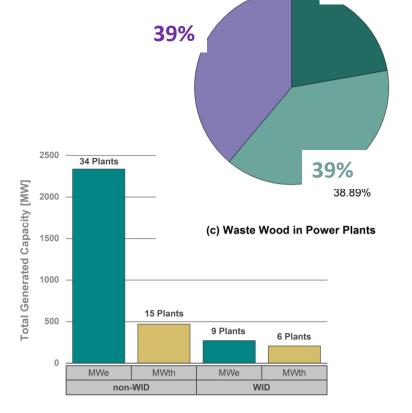


Figure 4. Type and proportion of solid biomass used in direct combustion stations: (a) greater than 1 MW_{e} but less than 25 MW_e and (b) greater than 25 MW_e. Source: [13].

Existing and planned plants firing and co-firing waste wood

•	Chilton Biomass ,	СНР	17.56 MW _e + 45 MW _{th}
•	Wilton 10 Power Station,	CHP BFB,	34 MW_{e} + 10 MW _{th}
•	Ridham Dock Biomass plant,	CHP Grate boiler,	25 MW _e + 75 MW _{th}
•	Ferrybridge Multi-Fuel Plant 2,	PB Grate boiler,	70 MW_{e}
•	Tilbury Green Power Facility,	PB Grate boiler,	60 MW _e
	Tasterne Biomass Plant,	FB,	22 MW _e
	Port Clarence Biomass Plant 2,	CHP PB Grate boiler,	40 MW _e
	Templeborough Biomass power p	<i>lant,</i> CHP PB Grate boiler	, 41 MW _e
	Widness CHP Plant,	CHP PB Grate boiler,	20 MW _e + 7.8 MW _{th}
	Holyhead Biomass Power Plant,	CHP CFB GF,	299 MW _e
	NEC Birmingham,	CHP FB,	$17 \text{ MW}_{e} + 20 \text{ MW}_{th}.$
	Trewcn Biomass plant,	CHP BFB,	$25 \text{ MW}_{e} + 2 \text{ MW}_{th}$
	Margam Green Energy Plant #2,	CHP Grate boiler	42 MW_e + 9 MW_{th}
	Fiddlers Reach Biomass Plant,	CHP GF,	15 MW _e
	Portbury Biomass-Fired Energy Pl	lant, CFB,	150 MW _e
	In operation	Approved	

Figure 5. Total power (MW_e) and thermal (MW_{th}) installed capacity for **non-WID** and **WID complaints**.

PFS CFB

BFB

PΒ

GF

22%

UCED is a mathematical model that optimises the operation of a power system with minimum system cost over a specified period

Inputs to the model

Operational characteristics of generators	Power <u>system</u> characteristics	<u>Model</u> set up
 <u>Conventional</u> power plants (incl. biomass number of each type of plants installed capacity availability factors 	 power capacity (ramp energy capacity 	
 min & max power start-up & shut-down costs fuel costs start-up & shut-down carbon emissions start-up fuel consumption start-up mode: cold, warm, hot start-up time min up & down times ramp-up & ramp-down rates and costs incremental costs incremental carbon emissions 	 Technology selection and operation partial biomass plants based on: Review on biomass and waste fuels previous opportunities in the UK Qualitative assessment and comparison biomass and challenging fuels based on Identification of policy incentives and sur CHP plants 	vious experience and future of combustion technologies for performance criteria
 plant operating efficiency variable operation & maintenance (O&M) costs load factors of renewable technologies 	Ioad shedding (pseud)	do generator)

UCED is a mathematical model that optimises the operation of a power system with minimum system cost over a specified period

Inputs to the model

<u>Operational</u>	characteristics of generators	Power <u>system</u> characteristics	<u>Model</u> set up			
\succ	electricity demand (either w	eather-corrected and scaled current demand or forecast demand)				
\triangleright	system inertia level and min	load level				
\succ	largest loss of credible gener	ation				
\triangleright	Solar and wind demand fore	cast uncertainty quantification				
\succ	system spinning reserve requ	quirement				
\triangleright	carbon cost					
\succ	policy support mechanisms f	for specific generators				

UCED is a mathematical model that optimises the operation of a power system with minimum system cost over a specified period

Inputs to the model

Operational characteristics of generators **Power S**

Power <u>system</u> characteristics

Model set up

- decomposition method (day-by-day, continuous, rolling horizon etc.)
- model horizon (years, days, hours etc.)
- dispatch method (quick linear; piece-wise quadratic approximation of fuel function etc.)
- solution algorithm (mixed integer programming (MIP), priority-based dynamic programming (DP) etc.)
- algorithm execution time (seconds)
- relative optimality gap (for MIP solvers)

Outputs from the model

- minimised system costs
- > power output of each plant at each interval
- > net output of CCS plants at each interval
- storage power input at each interval
- power plant revenues & costs
- spinning reserve contribution of each plant at each interval
- status of each plant (on or off) at each interval
- hours plants have been online or offline
- penetration of renewable generators
- curtailment of renewable energy
- fuel-price uncertainty analysis
- electricity price at each interval
 - marginal price for meeting demand
 - > marginal price for meeting demand <u>and</u> spinning reserve
- > marginal price of extra capacity and turndown of each generator at each interval
- marginal price of ramp up & ramp down
- > available reserve in the system at each interval
- > carbon intensity levels (hourly without start-up & shut-down costs; average over the horizon with and without start-up & shut-down costs)

GB Electricity System

Plausible GB system including

- 30 GW wind
- 20 GW solar

Biomass Power Plant Options

- Co-firing Pulverised Fuel
- Dedicated Pulverised Biomass
- Circulating Fluidised Bed
- Bubbling Fluidised Bed
- Packed Bed Grater

UCED (Unit Commitment Economic Dispatch) with challenging biomass

Opportunities in GB

- Preliminary results suggest PB boilers have the best performance
- Challenging fuels unlikely to play a significant role in UK electricity mix unless there is appropriate support

Regulations, Policy incentives & support mechanisms

Options being explored include

- Capacity Market
- 'Traditional' financial support (e.g. ROCs, Feed-in-Tariff)
- Additional measures to support investment

UCED model will be used to support

- Sensitivity analyses, with particular focus on fuel price and power-plant average efficiency
- Assessment of a variety of support mechanisms for challenging biomass plants

Conclusions

- Fluidised bed and grate boilers are the most widely used technologies for challenging fuels in power plants and CHP plants, with a power output within a range between 25 300 MW_e.
- Waste wood represents up to 35% of the solid biomass burnt in the UK for power generation. More than 16 power plants (> 20 MW_e) use challenging fuels, e.g. waste wood either alone or in combination with white wood.
- Preliminary results suggest PB/grater boilers have the best performance. Yet challenging fuels are unlikely to play a significant role in UK electricity mix unless appropriate support mechanisms are in place.
- UCED model using robust technical and economic parameters will be used to support
 ✓ Sensitivity analyses, with particular focus on fuel price and power-plant average efficiency
 ✓ Assessment of a variety of support mechanisms for challenging biomass plants

References

- [1] European Commission (2012) 'Roadmap 2050', Policy, (April), pp. 1–9. doi: 10.2833/10759
- [2] International Energy Agency (2013) Technology roadmap Carbon capture and Storage, Technology Roadmap Carbon Capture and Storage. doi: 10.1007/SpringerReference_7300
- [3] Karampinis E, Kourkoumpas D-S, Grammelis P, Kakaras E. New power production options for biomass and cogeneration. WIREs Energy Env 2015;4:471–85. doi:10.1002/wene.163.
- [4] Agbor E, Zhang X, Kumar A. A review of biomass co-firing in North America. Renew Sustain Energy Rev 2014;40:930–43. doi:10.1016/J.RSER.2014.07.195
- [5] Lüschen A, Madlener R. Economic viability of biomass cofiring in new hard-coal power plants in Germany. Biomass and Bioenergy 2013;57:33–47. doi:10.1016/J.BIOMBIOE.2012.11.017.
- [6] Basu P, Butler J, Leon MA. Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renew Energy 2011;36:282–8. doi:10.1016/J.RENENE.2010.06.039
- [7] Amirabedin E, Mcilveen-Wright. A Feasibility Study of Co-Firing Biomass in the Thermal Power Plant at Soma in order to Reduce Emissions: an Exergy Approach. Int J Environ Res 2013;7:139–54.
- [8] Caillat S, Vakkilainen E. Large-scale biomass combustion plants: an overview. Biomass Combust. Sci. Technol. Eng., Elsevier; 2013, p. 189–224. doi:10.1533/9780857097439.3.189.
- [9] Gonzalez-Salazar MA, Kirsten T, Prchlik L. Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables. Renew Sustain Energy Rev 2018;82:1497–513. doi:10.1016/j.rser.2017.05.278.
- [10] IRENA. Renewable Energy Cost Analysis: Biomass for Power Generation. vol. 1. Abu Dhabi: 2012.
- [11] Schröder A, Kunz F, Meiss J, Mendelevitch R, von Hirschhausen C. Current and Prospective Costs of Electricity Generation until 2050 2013. Berlin: 2013.
- [12] Mott MacDonald. UK Electricity Generation Costs Update. Brighton: 2010. doi:www.mottmac.com.
- [13] Office of Gas and Energy Markets. Renewables Obligation Annual Report 2016-17. London: 2018.

Use of Challenging fuels for the UK Low-Carbon Energy Transition

Laura Herraiz^{*}, Charithea Charalambous^{**}, Vitali Avagyan ^{***}, Mathieu Lucquiaud, Hannah Chalmers School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JL, UK

(*) L.Herraiz@ed.ac.uk (**) C.Charalambous@ed.ac.uk (***) V.Avagyan@ed.ac.uk

Opening New Fuels

12th ECCRIA Conference Cardiff University, Cardiff, UK, 5th-7th September 2018

