THE EFFECT OF BRIQUETTE COMPOSITION ON COKING PRESSURE GENERATION

L. Florentino-Madiedo*, E. Díaz-Faes, C. Barriocanal Instituto Nacional del Carbón, INCAR-CSIC, Apartado 73, 33080 Oviedo. Spain

> 12TH ECCRIA CONFERENCE CARDIFF UNIVERSITY, CARDIFF, UK 5TH-7TH SEPTEMBER 2018

Introduction

CHALLENGES FOR THE STEEL INDUSTRY

ENVIRONMENTAL POLLUTION

RAW MATERIAL CONSUMPTION

CHALLENGES FOR THE STEEL INDUSTRY

Introduction

CHALLENGES FOR THE STEEL INDUSTRY

ENVIRONMENTAL POLLUTION

RAW MATERIAL CONSUMPTION

Introduction

COKING PRESSURE
COAL/ADDITIVES CHARACTERISTICS
HEATING RATE
PARTICLE SIZE
BULK DENSITY

Background

COKING PRESSURE **COAL/ADDITIVES CHARACTERISTICS HEATING RATE PARTICLE SIZE BULK DENSITY**

Background

Experimental methods

BRIQUETTES COMPOSITION

(%)	B1	B2	вз	B4
Т	15	15	15	15
SC	15	15	-	-
С	70	35	42.5	85
A	-	35	42.5	-

Experimental methods

Permeability of plastic coal layer

Movable wall oven

Experimental methods

Permeability of plastic coal layer

- Density increased with a 15% or more briquette addition
- Briquettes addition even decreased the pressure of dangerous coal by 50%

Comparing with previous studies

The addition of 15% of briquettes (2.25% chestnut sawdust) in the coking blend had similar effects in coking pressure generation than the direct addition of 3% of chestnut sawdust.

Cold mechanical strength (JIS test)

- The cold mechanical strength presented a slight decrease for briquettes 1, 2 and 4, briquette 1 caused the greatest impairment.
- The addition of briquette 3 didn't caused any impairment in the cold mechanical strength.

BRIQUETTES COMPOSITION

	B1	B2	B3	B4
Т	15	15	15	15
SC	15	15	-	-
C	70	35	42.5	85
A	-	35	42.5	-

Coke Reactivity Index (CRI)

- The variation in coke quality is small (around 3 points) up tu 15% of briquette addition.
- There weren't significant differences between briquettes.

Coke Strength after Reaction index (CSR)

Coke Reactivity Index (CRI)

Coke Strength after Reaction index (CSR)

Comparing with previous studies

The results were similar to thous obtained with the direct addition of 3% of chesnut sawdust.

	B1	B2	B3	B4
Т	15	15	15	15
SC	15	15	-	-
C	70	35	42.5	85
A	-	35	42.5	-

Conclusions

Acknowledgement

The research leading to these results has received funding from the European Union's Research Fund for Coal and Steel (RFCS) research program under grant agreements No. [RFCR-CT-2014-00006] and No [RFCS-CT-2010-00006].