FERF Environment Interest Group Inaugural Seminar University of Sheffield, UK 11 April 2018

Development and testing of sorbents for high temperature solid-looping CO₂ capture

Matthew E. Boot-Handford,* Z. Zhang, Paul S. Fennell

* m.boot-handford@imperial.ac.uk

Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK

The Novel C-SHIFT Process for Efficient Low-Carbon H₂ and Power Production

Pressurised Kinetic Measurements of CO₂ Capture by K-Promoted Hydrotalcites in a High Steam Atmosphere

Matt Boot-Handford,* Zili Zhang, Paul S. Fennell

FERF Environment Interest Group Inaugural Seminar University of Sheffield, UK 11 April 2018

^{*} m.boot-handford@imperial.ac.uk

Department of Chemical Engineering,
Imperial College London

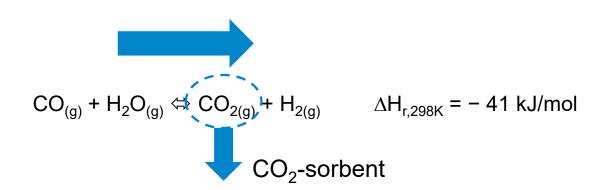
Presentation Overview

- Introduction to C-SHIFT and ENDEX technology
- Hydrotalcite-derived CO₂ sorbents- What are they and why?
- Sorbent testing using a pressurised fluidised (spouted) bed reactor
- Results
- Conclusions

The Carbonated-Shift (C-Shift) Process

What is it?

London



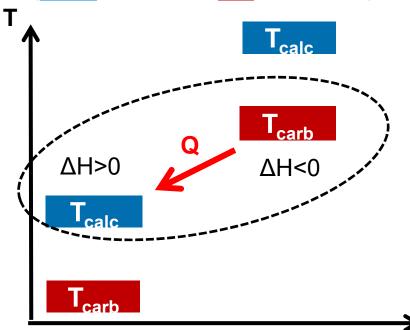
The Carbonated-Shift (C-Shift) Process

C-Shift combines the concepts of sorbent enhanced water-gas shift (SEWGS) with ENDEX sorbent regeneration technology.

SEWGS

Water-gas shift:

SEWGS removes CO₂ from system shifting equilibrium in favour of H₂ production

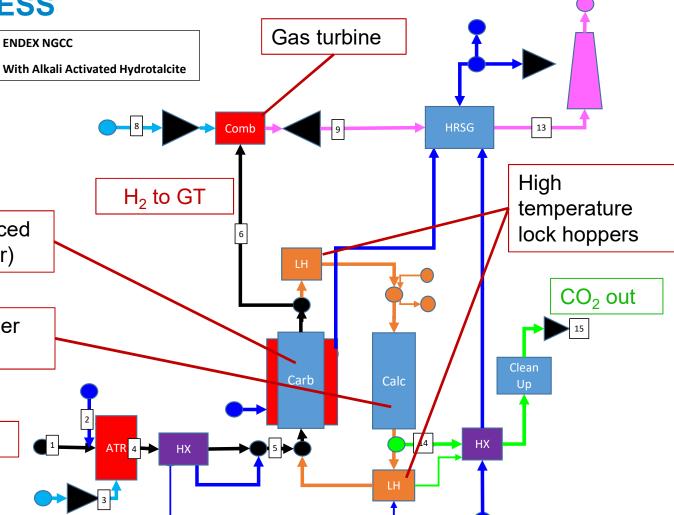


The Carbonated-Shift (C-Shift) Process

C-Shift combines the concepts of sorbent enhanced water-gas shift (SEWGS) with ENDEX sorbent regeneration technology.

ENDEX (ENDothermic-EXothermic)

- Heat released during exothermic carbonation is exploited to provide the heat necessary to drive the endothermic calcination reaction
- Harness the effect of CO₂ partial pressure on equilibrium constants
- Effect carbonation at a higher temperature than calcination at atmospheric pressure
- Calcination achieved by P-swing
- Thermally integrated carbonator and calciner


C-SHIFT PROCESS

Entrained flow reactors, with adiabatic calciner and pressure swing.

Sorption enhanced WGS (20-30 bar)

Adiabatic calciner (1 bar, 400°C)

Natural gas

C-Shift Sorbent Selection Criteria

&

Introduction to Benchmark C-Shift Sorbent Hydrotalcite-derived CO₂ sorbents

C-SHIFT Sorbent Selection Criteria

CaCO₃/CaO –most commonly investigated sorbent for SEWGS and ENDEX processes

However

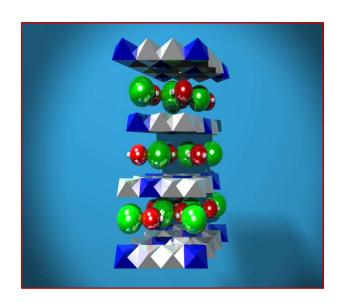
- ➤ Very high operating temperatures (800-1000 °C) necessary for ENDEX operation
 - Engineering challenges
 - Enhanced sorbent degradation issues
 - Safety Concerns

Therefore

An alternative sorbent capable at operating within a more moderate temperature range is desirable.

C-SHIFT Sorbent Selection Criteria

- Proven affinity with CO₂ at relevant process conditions (300-800 °C; 1-40 bar_a).
- CO₂ carrying capacity of 5 15 wt% (1.1-3.4 mmol CO₂/g sorbent)
- Fast kinetics for WGS & CO₂ capture at relevant process conditions
 i.e. capable of providing > 90 % CO₂ capture in a single pass reactor no larger than 12 m in height (i.e. residence times of < 60 s).
- Precursors Low cost, widely available and currently being manufactured at an industrial scale.



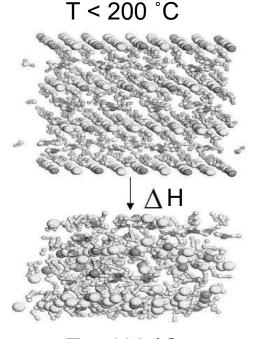
Benchmark Sorbent- K₂CO₃-promoted Hydrotalcites (K-HTCs)

Layered double hydroxide (LDH) with general formula:

$$[M_{1-x}^{II}M_{x}^{III}(OH)_{2}]^{-}[A_{x}^{I-1}]_{x/n}\cdot zH_{2}O$$
 where $x = 0.1-0.33$

Mg²⁺/Al³⁺-HTCs are typically investigated for high T CO₂ sorption

Structure of layered double hydroxide



Benchmark Sorbent- K₂CO₃-promoted Hydrotalcites (K-HTCs)

Layered double hydroxide (LDH) with general formula:

$$[M_{1-x}^{\parallel}M_{x}^{\parallel \parallel}(OH)_{2}]^{-}[A^{n-}]_{x/n}\cdot zH_{2}O$$
 where $x = 0.1-0.33$

- Mg²⁺/Al³⁺-HTCs are typically investigated for high T CO₂ sorption (300-500 °C)
- Calcination yields highly disorganised amorphous mixed metal oxide – active phase for CO₂ sorption.
- Carbonation mechanisms activated by impregnation with K₂CO₃ and presence of high pressure steam¹

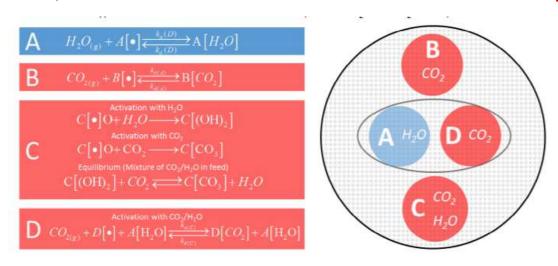
T > 400 °C

MD Simulations from Tsotsis et al. *J. Chem. Phys.* **2005**, *122*, 214713

 $ightharpoonup CO_2$ sorption capacities up to **15.1 mmol g**⁻¹* have been reported for HTC 11wt% K₂CO₃ loading Mg/Al ratio = 2.9

* Autoclave, 350 °C, 40 bar_a, P_{CO2} = 20 bar_a, P_{H2O} = 20 bar_a, t_{carb} = 2 hrs

^{*} Walspurger, S. et al. Chemistry-A European Journal **2010 16**(42) 12694-12700



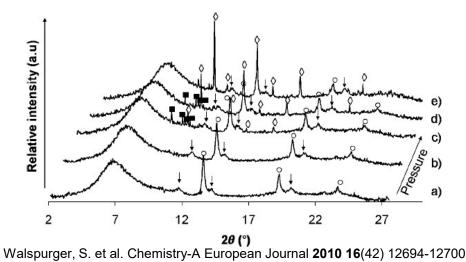
Benchmark Sorbent- K₂CO₃-promoted Hydrotalcites (K-HTCs)

Proposed Carbonation Mechanisms

(i) Fast but weak interaction on the surface and in the interlayers- enhanced by K₂CO₃ forming weak K-CO₃-Al type phase (steam enhanced)

Recently Coenen et al. provided evidence for the existence of 3 sites for CO₂ adsorption

Coenen, K. et al. Chemical Engineering Journal 2017 314 554–569.


Benchmark Sorbent- K₂CO₃-promoted Hydrotalcites (K-HTCs)

Proposed Carbonation Mechanisms

- Fast but weak interaction on the surface and in the interlayers- enhanced by K₂CO₃ forming weak K-CO₃-Al type phase (steam enhanced)
- Fast "ish" surface MgCO₃ formation

Slow bulk MgCO₃ formation

(high pressure steam and K₂CO₃ activated)

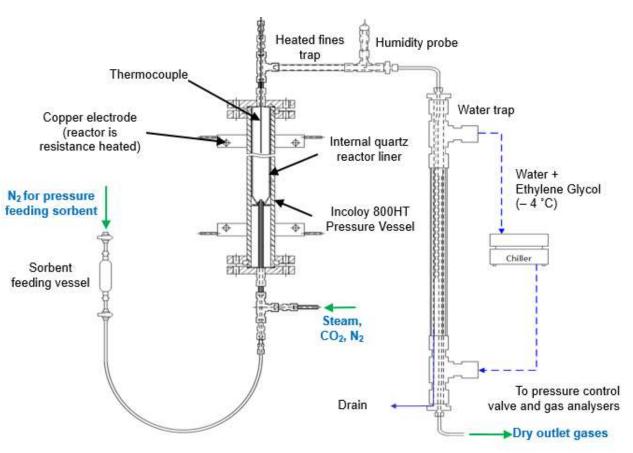
♦ MgCO₃ only starts to form at elevated pressure in the presence of steam

Benchmark Sorbent- K₂CO₃-promoted Hydrotalcites (K-HTCs)

K22-MG70 (250-355 μm)

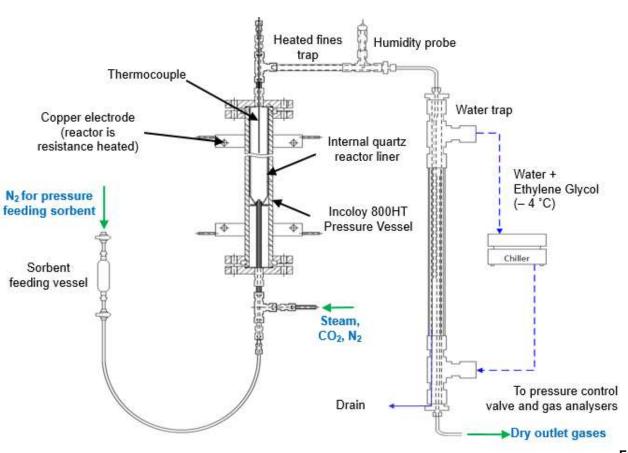
- ► HTC produced by Sasol comprised of 70 wt% MgO / 30 wt% Al₂O₃
 - promoted with 22 wt% K₂CO₃

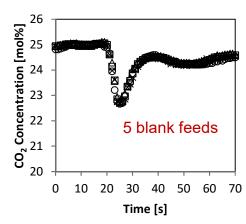
Sorbent Testing at Imperial College:


Determination of Carbonation Kinetics and Capacities at C-Shift Relevant Conditions and Time-Scales (i.e. < 60 s)

T = 300-500 °C

$$P_{CO2}$$
 = 0.5-5 bar (NG-CSHIFT)
 P_{H2O} = 0-4 bar

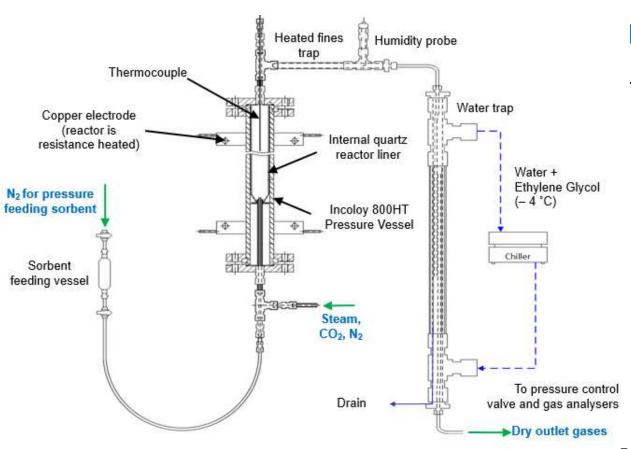

Sorbent Evaluation at C-Shift Relevant Conditions Pressurised fluidized bed (spouted bed) reactor



Sorbent Evaluation at C-Shift Relevant Conditions Pressurised fluidized bed (spouted bed) reactor

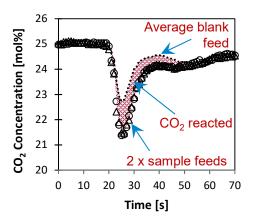
Experimental Protocol

- Experimental conditions are established and stabilised
- 2. Blank Feed



Experimental Conditions:

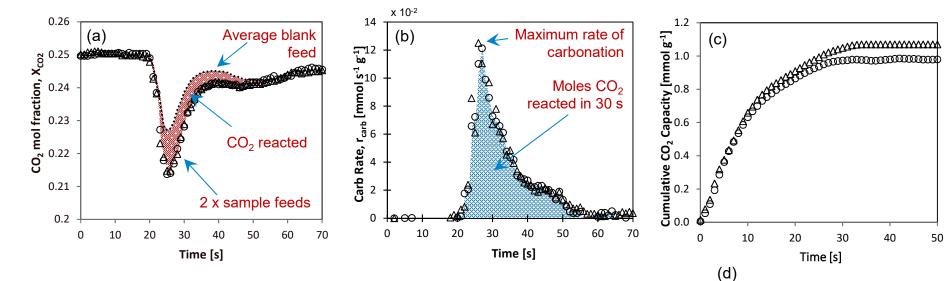
T= 400 °C, P= 10 bar_a, [CO₂]= 20 mol%, [H₂O] = 40 mol%,



Sorbent Evaluation at C-Shift Relevant Conditions Pressurised fluidized bed (spouted bed) reactor

Experimental Protocol

- Experimental conditions are established and stabilised
- 2. Blank Feed
- 3. Sorbent fed into reactor


Experimental Conditions:

T= $400 \,^{\circ}$ C, P= $10 \, \text{bar}_{a}$, [CO₂]= $20 \, \text{mol}\%$, [H₂O] = $40 \, \text{mol}\%$,

Determination the rate and extent of carbonation for fast initial carbonation reaction (0-30 s)

<u>Carbonation Conditions:</u> T= 400 °C, P= 10 bar_a, [CO₂]= 2 bar_a, [H₂O] = 4 bar_a Sorbent = K22-MG70-M-PLT (2 g, 250-355 μ m)

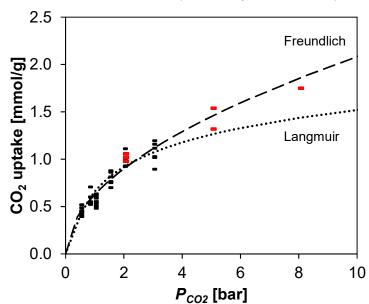
The rate of carbonation, r_{carb} (in mmol s⁻¹ g⁻¹) was calculated using the following equation:

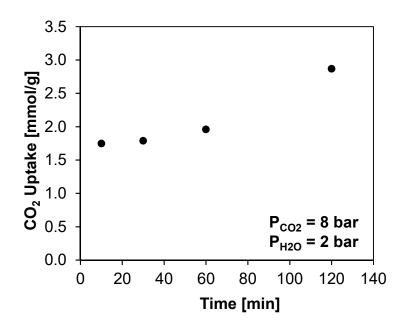
$$r_{carb} = \frac{Q_{in}(X_{CO_2,in} - X_{CO_2,out})}{(1 - X_{CO_2,out})}$$

The cumulative uptake capacity (c) for the initial fast reaction is readily obtained by integrating the rate profile with respect to time (blue area in (b)).

Sorbent Testing at Imperial College:

Results



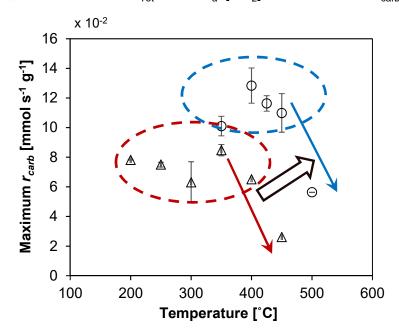

CO_2 Sorption Capacity Increased with Increasing P_{CO2}

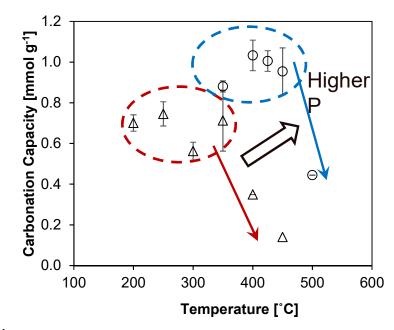
Carbonation Conditions:

T= 400 °C, P= 3-10 bar_a, $[CO_2]$ = **0-3 bar (& 2-8 bar)**, $[H_2O]$ = 4 bar, t_{carb} = **30 s (& 600 s)**

Sorbent = $K22-MG70-M-PLT (1.0 / 2.0 g, 250-355 \mu m)$

Isotherm Projections of working capacity at NG-CSHIFT conditions ($P_{CO2, carb}$ = 5.5 bar, $P_{CO2, cal}$ = 0.5 bar) 0.9-1.3 mmol/g


Sorbent more suitable for coal-IGCC-CSHIFT where $P_{CO2} \ge 10$ bar (1.1-1.6 mmol/g (10 bar_{CO2}), 1.4-3.0 mmol/g (20 bar_{CO2}) and 1.5-3.7 mmol/g (30 bar_{CO2})

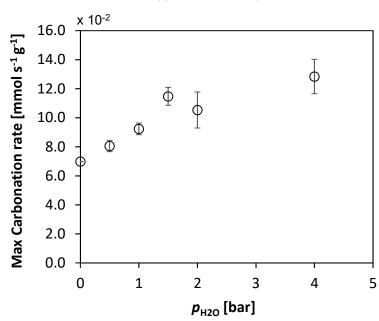


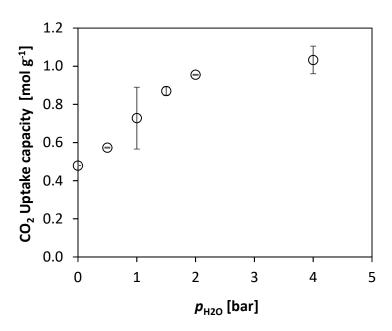
Increasing the P_{CO2} increases the temperature at which sorbent carbonation can be achieved

Carbonation Conditions:

```
\Delta T= 200-400 °C, P_{Tot} = 5 bar<sub>a</sub>, [CO_2] = 1 bar, S/C = 1, t_{carb} = 30 s Sorbent = K22-MG70-M-PLT (1.0 g, 250-355 µm) O T= 350-500 °C, P_{Tot} = 10 bar<sub>a</sub>, [CO_2] = 2 bar, S/C = 1, t_{carb} = 30 s Sorbent = K22-MG70-M-PLT (2.0 g, 250-355 µm)
```


Lower T – Carbonation rate and capacity relatively stable


Rate and capacity starts to decay at ~350-400 °C at 1 bar_{CO2} → shifted to 450-500 °C at 2 bar_{CO2}



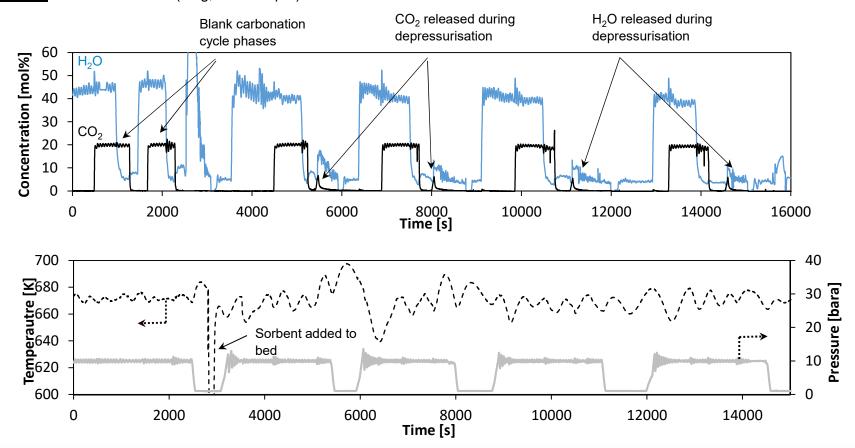
Presence of steam up to S/C ratio of 1 causes significant improvement in the carbonation rate and capacity

Carbonation Conditions:

T= 400 °C, P = 10 bar_a, p_{CO2} = 2 bar, p_{H2O} = 0-4 bar, t_{carb} = 30 s Sorbent = K22-MG70-M-PLT (2.0 g, 250-355 µm)

Increasing steam concentration from 0-2 bar (S/C =1) Carbonation capacity increased 0.41 → 1.01 mmol g⁻¹

Influence of steam transitions to a zero order relationship between 2 bar and 4 bar (S/C 1 \rightarrow 2)



Stable CO₂ Sorption Capacities of ~ 1 mmol/g over 10 cycles

<u>Carbonation Conditions:</u> T= 400 °C, P= 10 bar_a, [CO₂] = 20 mol%, [H₂O] = 40 mol%, t_{carb} = 600 s

<u>Calcination Conditions:</u> T= 400 °C, P= 10 \rightarrow 1 bar_a, [CO₂] = 0 mol%, [H₂O] = 0 mol%, t_{cal} = ~600 s

Sorbent: K22-MG70-M-PLT (20 g, 250-355 µm)

azent

Conclusions

► Increasing Carbonation Partial Pressure → Increase in Carbonation rate and initial fast uptake capacity
Maximum measured capacity = 1.03 mmol g⁻¹

- ➤ Projected working capacity- **0.9-1.1 mmol/g** at NG-CSHIFT conditions ($P_{CO2, carb}$ = 5.5 bar, $P_{CO2, cal}$ = 0.5 bar P_{CO2} ≥ 10 bar (**1.1-1.6 mmol/g** (10 bar_{CO2}), **1.4-3.0 mmol/g** (20 bar_{CO2}) and **1.5-3.7 mmol/g** (30 bar_{CO2})
- ➤ Increasing steam concentration from 0-2 bar (S/C =1) → Significant improvement in rate and initial fast uptake capacity

Maximum measured capacity increased 0.41 → 1.01 mmol/g (~ 150% increase)

- Limited additional improvement in CO₂ sorption kinetics/capacity for S/C > 1
- Preliminary screening to determine suitability of AA-Mag based sorbents for NG-CSHIFT applications has commenced

arcent

Thank you for your attention

This work was funded by the European Union Seventh Framework Programme (FP7) under grant n° 608512. ASCENT- Advanced Solid Looping Cycles with Efficient Novel Technologies

ASCENT Project webpage. Available from: http://ascentproject.eu/