

Assessment of Materials Performance Data for Advanced Combustion Plants

Dr. S Mori, Prof. N. J. Simms, Prof. J. E. Oakey

The Fuel and Energy Research Forum 2nd Annual Meeting and Inaugural Environment Interest Group Seminar,

11 April 2018

www.cranfield.ac.uk

Acknowledgements

- EU Research Fund for Coal and Steel Project RFCS-2015/709954
 - "Preparation for Commercial Demonstration Plant for 700 °C Operation"
 - DP 700 Phase 1

Outline

- Introduction
 - Advanced coal/biomass combustion systems
 - Materials issues
- Fireside corrosion
 - Degradation mechanisms
 - Materials data sources laboratory exposures
- Data gathering & Database development
- Summary

Introduction

Advanced solid fuel fired combustion plants

Higher efficiencies

- higher component operating temperatures and pressures $\sqrt{}$

Lower emissions

- CO_2 , SOx, NOx, etc. $\sqrt{}$

Carbon capture systems

- post-combustion capture?
- oxy-firing?

Fuel flexibility

- wide range of coals $\sqrt{}$
- co-firing with biomass?

Operational flexibility

- base load?
- cyclic operation √

Introduction

Materials issues in A-USC/HSC plants

Environmental

Steam-side oxidation:

- scale growth; scale spallation; erosion / blockages

Fireside corrosion:

- superheaters / reheaters; boiler walls

Fireside erosion

Mechanical

Creep

Fatigue (LCF, HCF and TMF)

Creep / fatigue interactions

Synergistic effects

Creep-corrosion

Corrosion-fatigue

How will the <u>balance</u> between these damage mechanisms differ in an A-USC/HSC plant?

Steam-side oxidation and fireside corrosion might be expected to make a larger contribution at the higher temperatures and pressures

focus on superheaters and reheaters

Introduction

Candidate Materials

Base alloys:

- Ferritic steels: T24, T92
- Austenitic steels: Sanicro 25, HR3C, 347HFG, 304HCu, 316L
- Ni-based alloys: 740H, 282, 263, 617 (modified)

Fireside Tube after corrosion exposure damage Steamside oxidation damage Outer Inner diameter of diameter of tube before tube before exposure exposure

Coatings

- Fireside (HVOF application):
 - Ni-50Cr; NiCrAlY; FeCrAl; Alloy 625, etc
 - With and without sealants
- Steam-side
 - Aluminising treatments
 - Application using slurry coating or liquid ionic plating

Fireside conditions for heat exchanger tubes

Fuel: coal / biomass

Gas stream characteristics:

Gaseous species – e.g. SO_X, HCl, O₂, CO₂, H₂O, NO_X, N₂

- Vapour species e.g. Na, K compounds
- Particles
 - from ash in fuel
 - condensed vapour species
- Gas temperature

Heat exchanger characteristics:

- Water / steam temperature (& pressure)
- Metal temperature (& heat flux)
- Deposit
 - rate of formation (flux)
 - composition

Laboratory Corrosion Tests

Critical parameters

- Metal temperatures
- Gas composition
- Deposit composition
- Deposition flux
- Coating / alloy compositions

Deposit recoat technique

- Simple 'simulation' of deposition flux
- Allows control of deposit composition
- Multiple deposit recoats (ideally >5)

Controlled atmosphere furnaces

- Specific gas compositions
- Alumina lined reactors
- Exposure temperatures controlled to +/- 3-5°C

Samples manufactured from tubes / bars

- Machined
 - Standard surface finish
 - Precision for dimensional metrology
- Measurment of dimensions

Sample Preparation

- Coated tubes cut into segments
- Reference samples also prepared
- Sample measured and weight prior to testing
- Now need to determine the test conditions

Net Mass Change

- Net mass change mass of sample only
- How does this compare to gross mass change?
- There is a better way...

Dimensional Metrology

Example measured metal loss data – rectangular sample

- Measurements from selected zones of corrosion behaviour
- Measurements from random locations
- Subtraction of pre- and post- test data sets
- No 'maximum' or 'typical' subjective data
- Sound metal = that left unaffected by damage (surface and internal corrosion)

Alloy 263 – 1000 hours laboratory tests at each temperature

with deposits

Probability plot for Alloy 263 fireside corrosion data

Median Metal Damage of Ni Alloys After 1000 h

Molten vs sticky vs solid

Superheater / reheater fireside corrosion damage

Deposit instability

- SO₃ needed to stabilise some sulphate phases & SO₃ favoured at lower temperatures
- Other phases more stable with change in deposit temperature

Fireside corrosion – examples of degradation of four stainless steels at 650 °C

Alloys covered with alkali iron sulphate deposit (D1) in simulated air-fired combustion gases for 1000h

Fireside corrosion damage to alloys exposed with alkali iron sulphate (deposit D1)

(a) Simulated air-fired combustion gases

(b) Simulated oxy-fired combustion gases (hot gas recycle option)

Corrosion Allowance

Corrosion Allowance

DP700 Materials Database

- Materials suitable for AUSC can be very expensive;
- Current approach in designing (design by code) too conservative;
- Need to develop a new approach to design (design by analysis);
- In order to change the approach a large amount of good quality data is needed;
- Large amount of data available in the literature;
- A lot of projects try to develop an AUSC (US, UK, India, China).

Design Database Layout

Example data for a fireside corrosion test

Data quality ratings – 5 levels

Level 5 (all the material pedigree data and production processing are provided) Highest Quality

- •chemical composition
- •material production process: material Manufacturer, primary melt process, de-oxidation practice, secondary melt process, ingot or continue casting
- •product manufacturing: hot/cold working process parameters
- product form and dimensions
- •heat treatment: time, temperature and cooling medium
- •microstructure
- •test environment (this is valid for corrosion/oxidation)

Level 4 (as Level 5 but information on material production/processing is not complete)

Level 3 (as Level 4 but the microstructure is not provided)

Level 2 (as Level 3 but the chemical composition and the product form/dimensions are not complete)

Level 1 only the indication of the name of the material is reported. Chemical analysis not provided, or only partially provided. Lowest Quality

Strucure of the Database

Use of the qualified data

Summary

- AUSC will require high spec materials;
- Some of these materials need to be studied;
- The way to assess the properties is crucial;
- Key point is the assessment of the corrosion allowance;
- One possible way is via Dimensional Metrology;
- Reduce the costs of these materials is also vital;
- One way is to change the approach to the design (Design by Analysis);
- A lot of good quality data and the building of a database is crucial for this point.

Thank you for your attention

stefano.mori@cranfield.ac.uk

www.cranfield.ac.uk

T: +44 (0)1234 750111

@cranfielduni

@cranfielduni

/cranfielduni