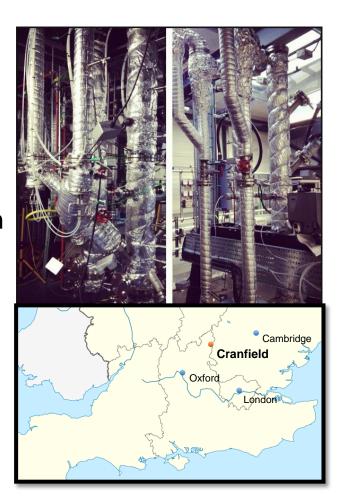
This work is supported by the UK Engineering and Physical Sciences Research Council, under project EP/P034594/1.

Calcium looping combustion for high-efficiency low-emission power generation from coal,

D.P. Hanak & S. Michalski & V. Manovic

Sebastian S. Michalski, PhD Research Fellow in Low-Carbon Energy Systems



12th ECCRIA Conference
Cardiff, United Kingdom, 5th September 2018

www.cranfield.ac.uk

Research interest of *Thermal and Chemical Process*Engineering Group

- CO₂ capture, transport and storage
- CO₂ utilisation
- Energy storage
- High-efficiency low-emission power generation
- Novel combustion and gasification processes
- Sustainable energy systems
- Alternative fuels
- Novel materials for CO₂ capture

Outline

- 1. Background
- 2. Calcium looping
- Calcium looping combustion based power plants
- 4. Techno-economic performance assessment
- 5. Conclusions

Background

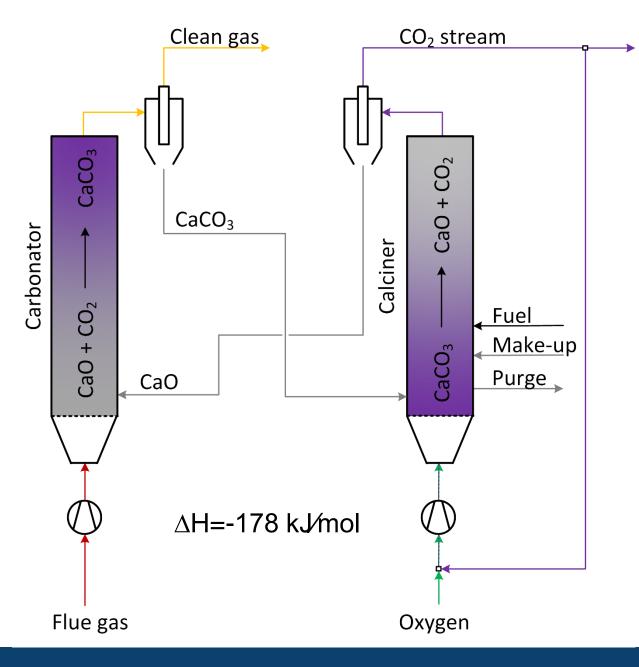
To reduce the risks and impacts of climate change, the temperature increase needs to be kept well below 2°C compared to pre-industrial levels - Power sector accounts for a third of total greenhouse gas emissions.

- A large share of global electricity produced from coal (~28.1%)¹;
- Low average thermal efficiency of the power plant fleet;
- Low price of coal-based power generation.

¹ Key World Energy Statistics, 2017, Rapport, International Energy Agency

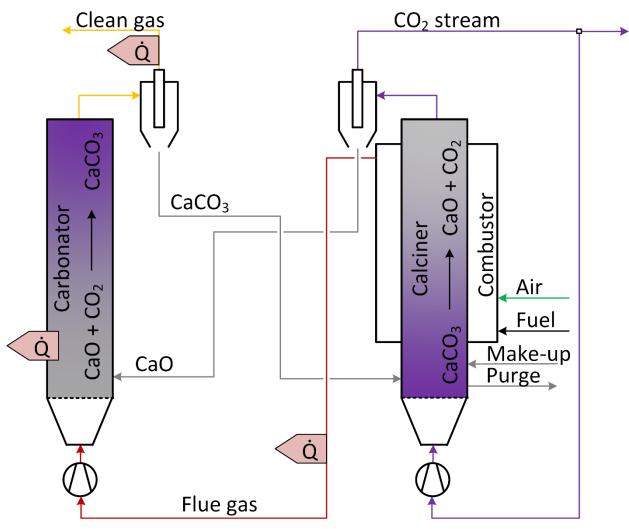
Background

The power sector can be decarbonised via portfolio of measures, such as:

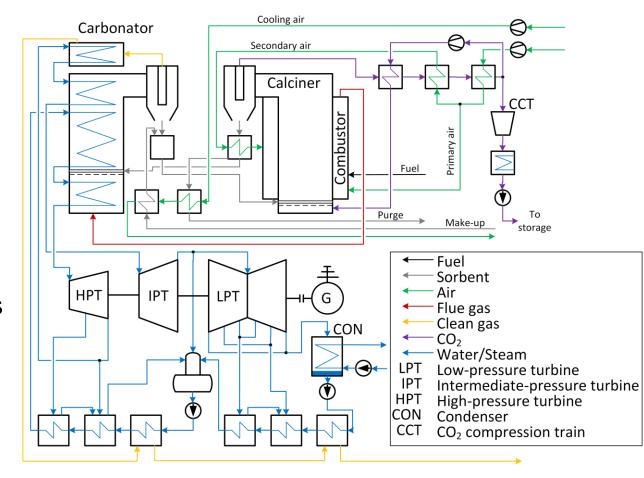

- Renewable energy sources (linked with energy storage technologies);
- Nuclear power systems (lack of social consent and flexibility);
- Carbon capture and storage:
 - Oxy-combustion and chemical solvent scrubbing 7-13% points efficiency drop¹;
 - Calcium looping retrofit 5-8% points efficiency drop².

¹ Boot-Handford, M.E., Abanades, J.C., Anthony, E.J., Blunt, M.J., Brandani, S., Mac Dowell, N., Fernandez, J.R., Ferrari, M.C., Gross, R., Hallett, J.P., Haszeldine, R.S., Heptonstall, P., Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R.T.J., Pourkashanian, M., Rochelle, G.T., Shah, N., Yao, J.G., Fennell, P.S., 2014. Carbon capture and storage update. Energy Environ. Sci. 7, 130-189

² Hanak, D.P., Anthony, E.J., Manovic, V., 2015. A review of developments in pilot plant testing and modelling of calcium looping process for CO₂ capture from power generation systems. Energy Environ. Sci. 8, 2199-2249.

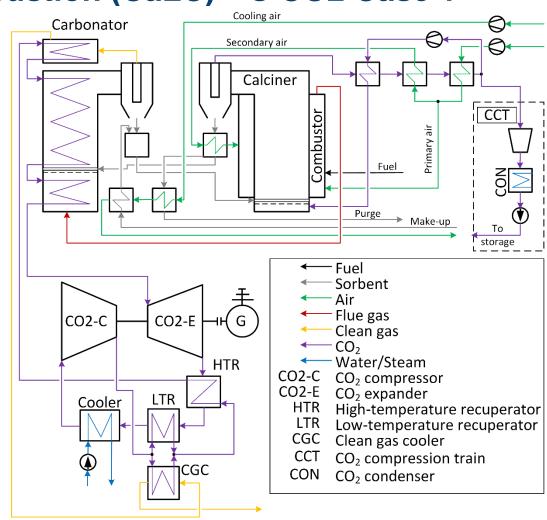

Calcium looping

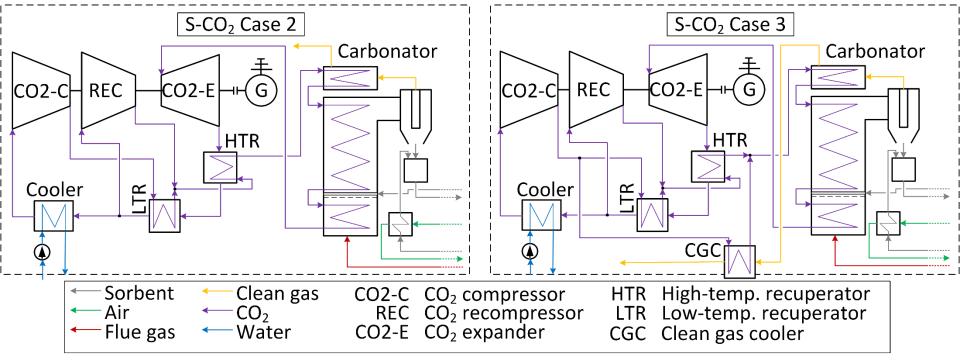
Process flow diagram of calcium looping – internal combustor


Calcium looping combustion (CaLC)

- Self sufficient heat generation system;
- No need for oxygen production;
- Three high temperature heat sources.

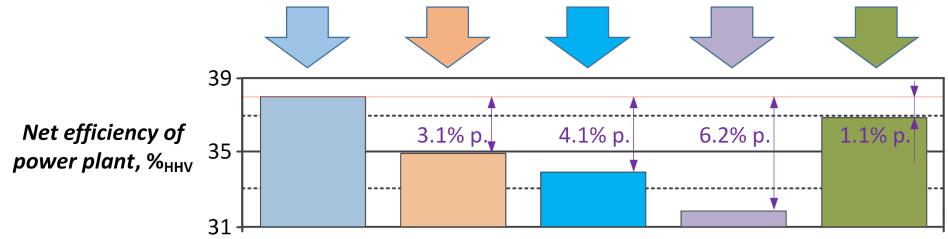
Calcium looping combustion (CaLC) – steam cycle


- Working temperature of Calciner - 900°C and Carbonator -650°C
- Gross electrical power
 592.7 MW_{el}
- Live steam parameters
 593.3°C/24.23 MPa
- Reheated steam par. 593.3°C/4.9 MPa

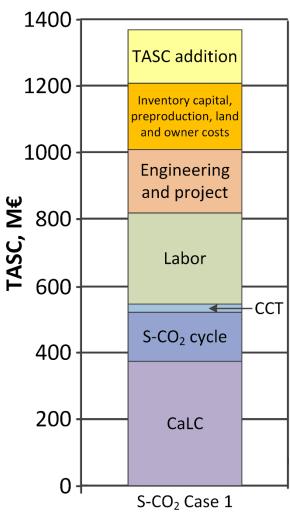

Hanak, D. P. and Manovic, V. (2017) 'Calcium looping combustion for high-efficiency low-emission power generation', Journal of Cleaner Production, 161, pp. 245–255. doi: 10.1016/j.jclepro.2017.05.080.

Calcium looping combustion (CaLC) – s-CO2 Case 1

- Working temperature of Calciner - 900°C and Carbonator -650°C
- Gross electrical power
 563.4 MW_{el}
- Live CO2 stream temperature 675°C
- CO₂ compressor outlet pressure 27 MPa



Calcium looping combustion – s-CO2 Case 2 and Case 3



Quantity, Unit	Calcium looping combustion power plant		
	S-CO ₂ Case 2	S-CO ₂ Case 3	
Working temperature of Calciner/Carbonator, °C	900/650	900/650	
Gross electrical power, MW _{el}	535.5	610.1	
Live CO ₂ stream temperature, °C	675	675	
Main CO ₂ compressor outlet pressure, MPa	27	21	

Quantity, Unit	Conventional coal-fired power plant	Calcium looping combustion power plant			
		Steam cycle	s-CO ₂ Case 1	S-CO ₂ Case 2	S-CO ₂ Case 3
Heat input from coal combustion, MW _{th}	1452.6	1452.6	1452.6	1452.6	1452.6
Gross power output, MW _{el}	580.4	592.7	563.4	535.5	610.1
Net power output, MW _{el}	552.7	507.3	492.6	462.2	535.3
Boiler thermal efficiency, % _{HHV}	85.2	88.3	86.4	73.1	86.0
Specific CO ₂ emission, g/kW _{el} h	796.8	102.1	105.1	112.1	96.7

- Newly developed method to calculate investment cost:
 - Cost of individual components are calculated based on their scale parameter: (thermodynamic parameters);
 - Total as spent cost division based on the DOE/NETL rapport 1;

¹ Fout, T. et al. (2015) 'Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3', National Energy Technology Laboratory (NETL), 1a(May), p. 240. doi: DOE/NETL-2010/1397.

- Break-even price of electricity method of economic analysis based on the NPV method:
 - Electricity price is changed to value for which the NPV reach zero;
- Assumptions:
 - Discount rate 6%;
 - Capacity factor 85%;
 - Building period 4 years;
 - Exploitation period 25 years;
 - Commercial loan 80% of the TASC (interest rate 6%, repayment time - 15 years)
 - Salvage value 20% of the TASC.

30 -

Quantity, Unit		Conventional	Calcium looping combustion power plant			
		coal-fired power plant	Steam cycle	s-CO ₂ Case 1	S-CO ₂ Case 2	S-CO ₂ Case 3
Total as spent cost, M€		1373.5	1533.2	1365.5	1322.4	1362.0
Specific capital cost, €/kW	el,gross	2366.5	2586.7	2423.7	2469.6	2232.3
CO ₂ avoided cost, €/t _{CO2}		-	29.52	28.62	37.73	24.07
70 : 60 : Break-even electircity price, 50 : €/MW _{el} h 40 :						
	50 - 40 -	44.82	65.32	64.61	70.65	61.67

Conclusions

- The net efficiency drop of CaLC power plant with steam cycle net is much lower than in other CCS technologies;
- The net efficiency drop for CaLC power plant was reduced by 2% points by implementation of s-CO₂ cycle;
- The CO₂ avoided cost of CaLC power plant with s-CO₂ Case 3 is higher by
 2.8 €/t_{CO2} than current value of carbon tax (21.3 €/t 28/08/2018 ¹).

This work is supported by the UK Engineering and Physical Sciences Research Council, under project EP/P034594/1.

¹ Business Insider (2018) CO₂ European Emission Allowances PRICE Today | Price of CO2 European Emission Allowances and Chart | Markets Insider. Available at: http://markets.businessinsider.com/commodities/co2-emissionsrechte (Accessed: 29 August 2018).