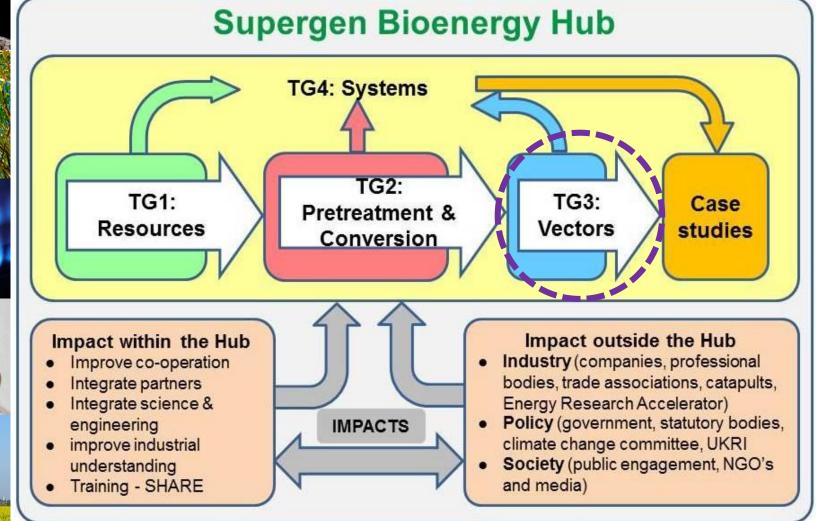


Supergen Bioenergy Hub 2018-2022: Bioenergy Vectors Research Theme

Increasing the Role of Bioenergy in the UK's Wider Energy Mix and Bio-Economy

> 12th ECCRIA Conferences 5th September 2018, Cardiff University

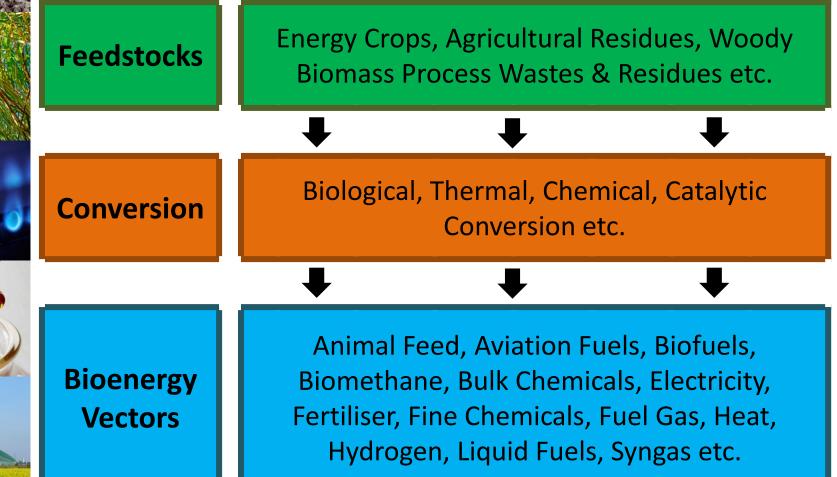

Andrew Welfle Tyndall Centre for Climate Change Research University of Manchester

Supergen Bioenergy Hub Project Structure

Bioenergy Vectors Topic Leader

Dr. Marcelle McManus

M.McManus@bath.ac.uk


Topic Representative – Andrew Welfle (University of Manchester)

So what is a Bioenergy Vector

The Bioenergy Vectors Theme

Aims & Objectives:

- Identify preferred bioenergy pathways that will produce appropriate bioenergy vectors to meet the UK's demands.
- Analyse the role that different bioenergy vectors could have within the wider UK energy network.
- Determine how these fit within the UK's wider bioenergy, bio-refinery and carbon reduction strategy.
- Target to reduce emissions, reliance on fossil fuel & improve national & regional resilience through bioenergy.

 Review of existing UK bioenergy systems & bioproduct pathways.

Supergen

Bioenergy

- bioproduct pathways.
 Identify primary case studies
- Define the existing knowledge base on relevant conversion pathways, costs and TRL's for key vectors.

Task 2 - Specificatio

Supergen

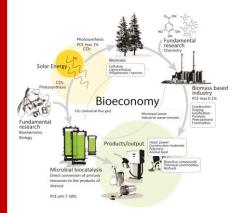
Bioenergy

- Parameterize the quality specifications for bio-based alternatives.
- Compatibility with existing
- technologies & infrastructure.
- Longevity of vectors viability

The Bioenergy Vectors Theme Work Tasks

- Exploration of wider impacts.
- Attributional LCAs of selected pathways.
- , Water, GHG & Energy
- balances.
- Spatial analysis impact location.
- Temporal analysis impact timeline

Studies Case \mathbf{m} Task



The Bioenergy Vectors Theme Work Tasks

- Task 4 Integration
- Explore role of bioenergy in the UK's energy mix & bioeconomy.
 - Build on the existing Transition Pathways work.
 - Analyses of high value nonenergy bio based vectors.

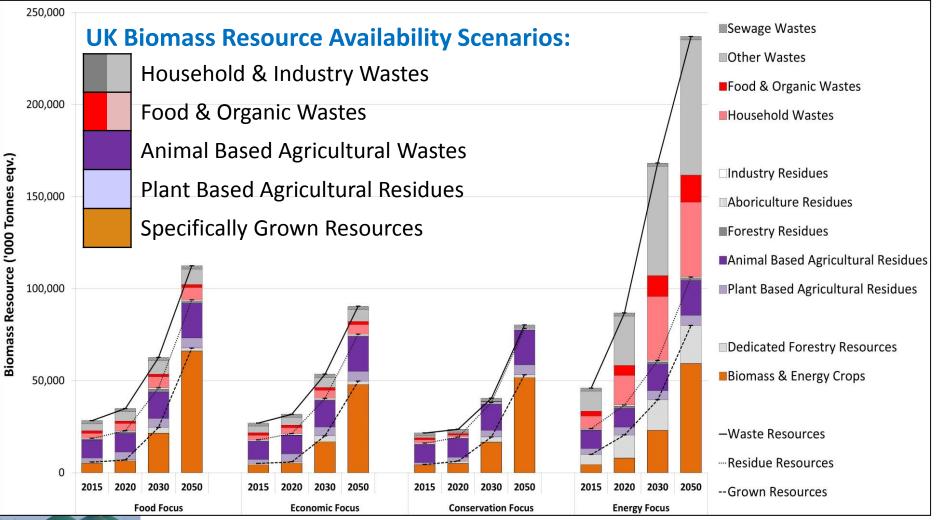
Important to Understand the UK's Bioenergy & Bio-Product Demands

The University of Manchester

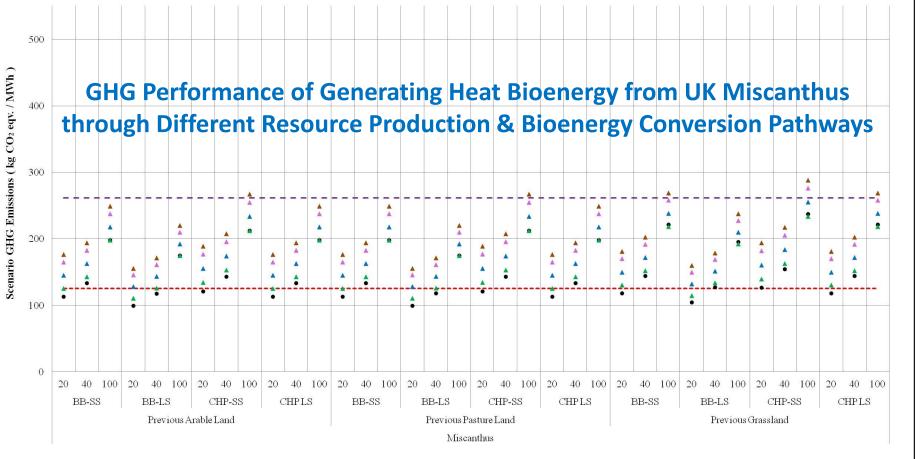
UK Bioenergy & Bio-Product Demands

	UK Bioenergy Sector		2015	2015 2020		2030		2040	2050
			Near-Term		Mid-7	Mid-Term		Long-Term	
	Bio- Heat	Demand Trends	Gradual increase in demand i both increased traditional and roles for bio-heat.		and specialist	Gradual decline in demand reflecting the targeted focus on emerging alternative low carbon heat technologies. Bio-heat continuing within specialist roles such as by industry.			
	Sector	Key Resource Demands				used resources (pellets & chips) cks for advanced bioenergy technologies			
	Bio- Power	Demand Trends	Sharp increase in demand driven by increased & further conversion of conventional power plants to allow co- firing with biomass.			Gradual decline in demand as co-firing plants are expected to gradually close. Continuing demand for bio-power systems contributing to balance peak energy demands.			
	Sector	Key Resource Demands	 Solid biomass resources (wood, animal based, plant based, wastes) 						
141	Bio-	Demand Trends	Sharp increase in demand for biofuels for the transport sector.			High uncertainty for the long-term biofuel sector, due to potential emergence of alternative low carbon technologies.			
	Fuel Sector	Key Resource Demands	Energy Crons		Energy Crops Lignocellulosic resources.				

The University of Manchester


The Opportunities & Challenges of the Variability of Bioenergy

Variability of UK Biomass Resources


Welfle, A., Gilbert, P. & Thornley, P., 2014. Securing a Bioenergy Future without Imports. Energy Policy, 68, pp.1–14. Available at: http://www.sciencedirect.com/science/article/pii/S0301421513012093 [Accessed November 26, 2014].

Variability of Bioenergy GHG Emissions

Welfle, A., Gilbert, P., Thornley, P., Stephenson, A., 2017. Generating low-carbon heat from biomass: Life cycle assessment of bioenergy scenarios. J. Clean. Prod. 149, 448–460. doi:10.1016/j.jclepro.2017.02.035

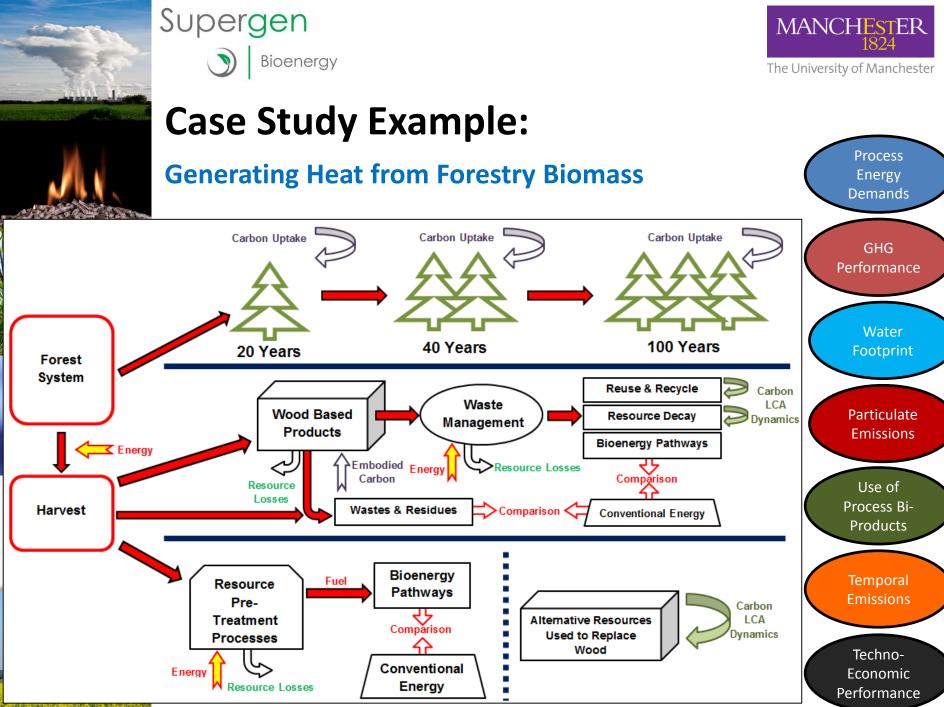
The University of Manchester

Developing the Supergen Case Study Scenarios for Analysis

The Supergen Bioenergy Case Studies

Range of Potential Case Study Components

RESOURCES


- UK agricultural product e.g. energy crop or residue
- Lignocellulose (woody biomass or waste)
- Organic wastes e.g. waste wood & MSW
- **Difficult** wastes
- Dry brown biomass & waste & wet biomass & waste
- Woody material e.g. forest residues and coppice
- Process residues from bio-processing

PRETREATMENT & CONVERSION		VEC
 Biocatalysis 		• Ar
 Catalytic conversion 		
 Chemical conversion 		• A
Digestion		• Bi
Fermentation		• Bi
 Fractionation to simple sugars 		• Bu
 Hydrolysis & separation, 		• El
 Hydrothermal processing 		• Et
 Omnivorous catalytic technology 	1	
Pyrolysis		• Fe
 Saccharification 		• Fi
 Gasification to syngas 		• FL
Separation		• He
 Synthesis of alcohols 		
 Synthesis of hydrocarbons 		• Hy
 Thermal conversion of residues 		• Li
	1	-

Upgrading

CTORS nimal feed viation fuels liofuels iomethane ulk chemicals lectricity

- thanol
- ertilizer
- ine Chemicals
- uel gas
- leat
- lydrogen
- iquid fuels
- Syngas

and the second second

In Summary the Vectors Theme will:

The Vectors and Systems will work closely together to evaluate the future role of UK bioenergy and its impact; with a particular focus on development of the bio-based economy, supporting the UK's industrial strategy with integration of bioenergy, bioproducts and impacts.

Our Approach

- Process Modelling & Life Cycle Assessment (LCA) of Key Case Studies
- Close integration with the Systems Research Theme that will focus on the wider sustainability impacts of UK bioenergy development.

Any Questions?

Dr. Andrew Welfle

Tyndall Centre for Climate Change Research The University of Manchester

andrew.welfle@manchester.ac.uk
 +44 (0)161 275 4339
 @andrew_welfle
 Linkedin_ Andrew Welfle