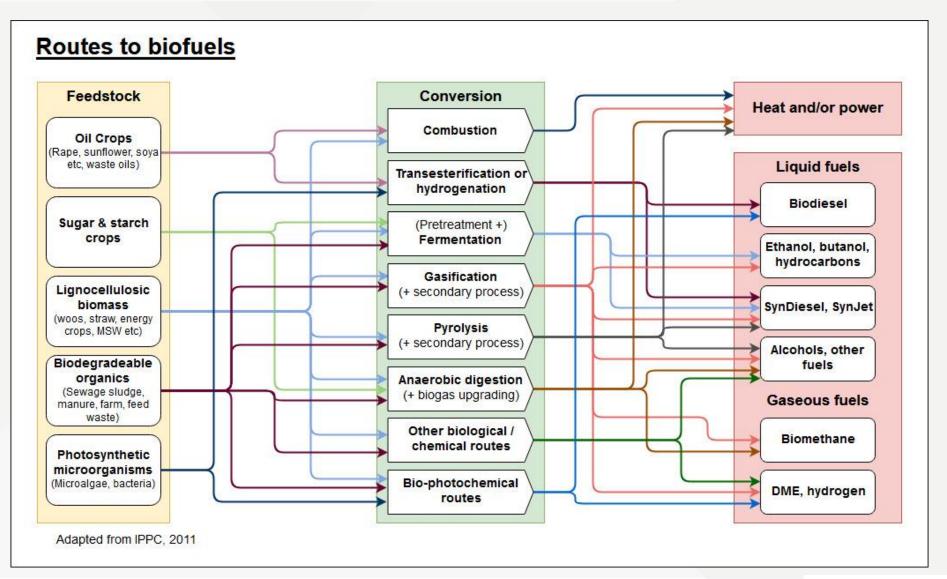


TG2 - Pretreatment and conversion

Dr. Katie Chong 12th ECCRIA Conference 5th September 2018


Structure

So many routes!

Pretreatment and conversion

- Experimental work in three complementary world leading labs on:
 - Biological
 - Thermochemical, and
 - Catalytic approaches
- Routes to liquid and gaseous vectors
- Will provide underpinning data on:
 - Process conditions
 - Material and feedstock issues
 - Plant design
- Integration of bioenergy with circular economy considering economic impact, material recovery and products

Topic group leaders

Fermentation Jason Hallett Imperial College

Pyrolysis Tony Bridgwater Aston University

Photocatalysis Chris Hardacre University of Manchester

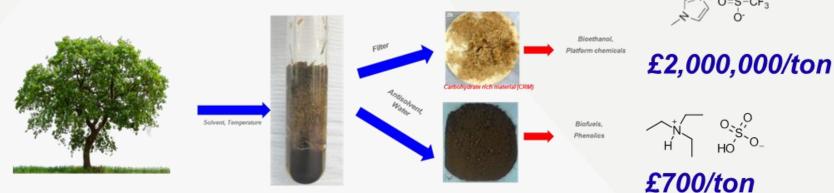
Topic representative – Katie Chong

WP2.1 – Review feedstock quality and characteristics

Bioenergy

- Jointly with WP1
- Review of existing research and a workshop
- During first 6-12 months of project
- Exploring how feedstock quality/characteristics influences the choice of pretreatment and conversion technology
- The hub's focus is lignocellulosic and waste feedstocks
- Outcome will be a series of maps describing opportunities and constraints

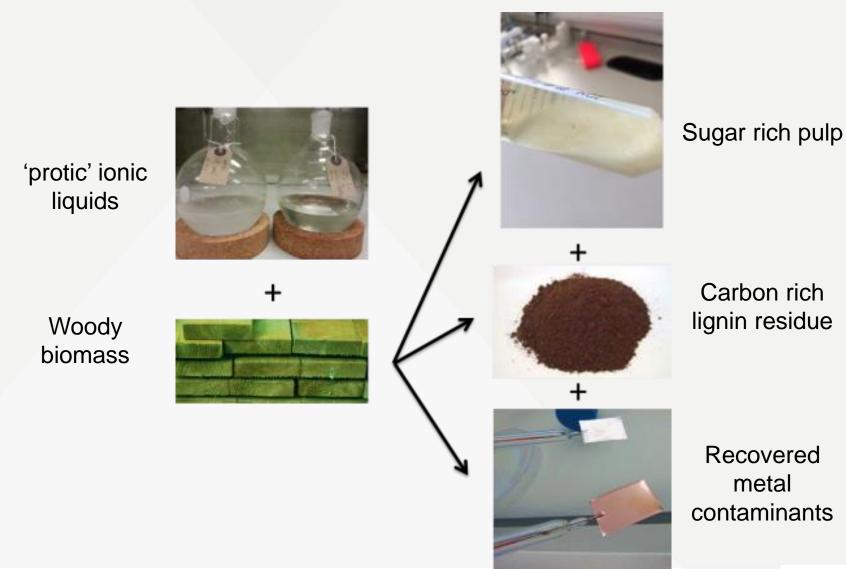
WP2.2 – Fermentation



Supergen

Bioenergy

lonic liquid pretreatment (ionoSolv)


- Heavily contaminated feedstock
- Low-cost solvents
- Integrated separations
- Outstanding economics
- Materials from all streams
 - Biofuels
 - Bioplastics
 - Renewable Materials

Biorefining with the world's cheapest ionic liquids

ionoSolv

WP2.3 – Pyrolysis

- Biomass is heated in the absence of air or oxygen to decompose or devolatilise the biomass into:
 - Solid char
 - Liquid as bio-oil
 - Gas

Four topics to be investigated

- Ash effect in pyrolysis
- High lignin residue utilisation
- Bio-processing residues utilisation
- Levoglucosan production strategies and costs

Effects of ash and contaminants

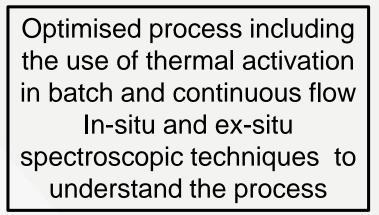
- Catalysts as ash and char crack organic products from pyrolysis into water and carbon dioxide leading to:
 - A lower organic content vapour and liquid with less energy
 - And potentially a phase separated liquid product
- Potassium is the most active alkali metal in cracking
- Char is also catalytic from the alkali metal content
- Ash contents of typically more than 3 wt.% ash can cause phase separation in the liquid. Phase separation is non-reversible and can only be remedied by addition of high proportions of ethanol or similar solvents.
- Low ash feed beech
- High ash feed miscanthus

Residue utilisation

- Key issue with chemical processing of biomass is the production of residues
- These are often of low value and difficult to process
- Investigation into processing residues by fast pyrolysis
- Generating:
 - Liquid fuels
 - Phenolic rich products
- The research will have impact on strategies for integrated and optimised design of biorefineries

WP2.4 – Photocatalysis

Supergen


Bioenergy

First generationBio-ethanol \rightarrow Fermentation of biomassbio-fuelsGlycerol \rightarrow By-product of biodiesel process

Second generation
Lignocellulosic biomass
bio-fuels

Cellulose (40-50 %) Hemicellulose (25-35 %) Lignin (15-20 %)

Water gasification Aqueous phase reforming Dark fermentation Enzymatic photoproduction **Photocatalytic reforming**

Selective depolymerisation

Fuels

Photocatalysis

Supergen

Bioenergy

- The photocatalytic reforming of:
 - Ethanol
 - Glycerol
 - Sucrose
 - Cellulose
 - Lignin
 - Grass
 - Bio-oil (provided by Aston)

Under anaerobic conditions

Generating syn-gas that can be converted into liquid bio-fuels

Summary of tasks Conversion and pretreatment

- Task 2.1 Review feedstock quality and characteristics
- Task 2.2 Fermentation
 - lonosolv
- Task 2.3 Pyrolysis
 - Impact of ash content
 - Pyrolysis of biorefinery residues
- Task 2.4 Photocatalysis
 - Transformation into syngas via photocatalysis

Plus additional work via Supergen Flexible Funding

Thank you!

Dr Katie Chong k.chong1@aston.ac.uk +44 (0)121 204 4088 Twitter: @drkatiechong

