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e Briefly introduce the concepts of oxy-coal
combustion, burner staging and NO
reburning

e Present the findings of an investigation
into the utilisation of burner staging during
oxy-fuel combustion and the impact on NO
reburning
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/ Oxy-coal
? Shetnla Combustion: An
Introduction
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e Oxy-fuel combustion is a carbon capture technology

e An O,/CO, oxidant is used instead of air in order to produce a flue gas
with a far higher CO, content

e Greatly simplifying CO, capture

e The oxidant is formed by recirculating flue gas and combining with
pure O,

e Oxy-fuel combustion has been called most techno-economically
feasible CCS technology
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Oxy-coal
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Combustion:
Common Challenges

e Oxidant has some very different properties to air, including a higher
heat capacity and density

e This impacts flame temperature and stability

e |In order to match air’s flame temperature the oxygen concentration
in the oxidant must be enriched

e The technology is associated with costly unit operations (ASU, SCR
etc)
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: Oxy-coal
? Ghettela. Combustion: NO
Processes

e NO concentration in flue gas tends to be
higher than air

University

X

e Due to lack of nitrogen’s diluting effect
e Emission rate is lower though

® Higher 02 ConcentratiOn enabling |ncreaSEd Toftegaard, M.B., Brix, J., Jensen, P.A., Glarborg, P., Jensen, A.D.

(2010) Oxy-fuel combustion of solid fuels. Progress in Energy and

conversion of fuel-N=>NO T e
Fuel-N
e Recycled NO reburning = reduction of NO R

through reaction with volatile-C, volatile-N “.-,.m 5
and char (in presence of CO)
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Oxy-coal
Combustion:
Burner Staging

e |t is common for studies to utilise furnace staging for minimising NO
formation

e The presence of NO in an over-fire stream would reduce overall rate
of NO reburning

e Therefore, studying the impact of burner staging on NO reburning is
essential

e Increased in-flame NO reduction would reduce load on secondary
NO, technologies and help realise zero-NO, oxy-coal combustion

Adaptesd from: Ochi, K.,
Kiyama, K., Yoshizako, H.,
Okazaki, H., Taniguchi, M.
(2009) Latest low-NOx
combustion technology for
pulverised-coal-fired boilers.
Hitachi Review, 58(5), 187-
N 193

secondary zone | 3>1

primary zone
L AWORLD
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250 kW, combustion test
facility at PACT

Conditions: Air and OF 28 at
200 kW, and OF 27 and OF 30
at 170 kW,,

Radial in-flame, axial and flue
measurements

Oxidant with recycled flue gas
is simulated using pure CO,, O,
and NO
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Szuhanszki, J., Farias Moguel, O., Finney, K., Akram, M.,
Pourkashanian, M. (2017) Biomass combustion under oxy-fuel and
post combustion capture conditions at the PACT 250 kW
air/oxy-fuel CTF. Available: http://www.supergen-
bioenergy.net/media/eps/supergen/presentations/assembly-
2017/25.10.2017_SUPERGEN---Sheffield-Project-outputs_for-
web.pdf
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Burner Operation

e |nitial (1°) oxidant and burnout (2° and 3°)
oxidant mass flows are controlled

e Sliding damper on the burner allows partitioning
of the burnout oxidant into variable 2° and 3°
flows, while 1° remains constant

e This enables controlled variability of
stoichiometry in the fuel-rich region

e The near-burner stoichiometry is a term used to
represent the ratio of mass flow of oxygen in
the 1° and 2° oxidant to the mass flow of
oxygen in the combined 2° and 3° oxidant

Szuhanszki, J., Farias Moguel, O., Finney, K., Akram, M., Pourkashanian, M. (2017) Biomass combustion under oxy-fuel and

post combustion capture conditions at the PACT 250 kW air/oxy-fuel CTF. Available: http://www.supergen-
bioenergy.net/media/eps/supergen/presentations/assembly-2017/25.10.2017_SUPERGEN---Sheffield-Project-outputs_for- AWORLD
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Air + OF 28 200 kW,,

Impact of the Primary Flow and Burner Staging on NO

Formation

Four primary flowrates (vol%)
tested for air

20% decidedly most favourable
across near-burner
stoichiometry spectrum

This now used as constant for
all oxy-coal scenarios

At OF 28, NO emissions are
lower than air until A < 0.7 and
unburned carbon becomes
lower past this point
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JErg A+ OF 28 200k,

Comparison of NO, Emission Rate without NO

‘Recycling’

e Confirmation of far superior emission rate from oxy-coal flame

e Reasons for lower NO, formation:
- The reverse Zeldovich mechanism
- Lack of thermal and prompt NO
- Likely temperature increase in
fuel-rich zone causing: reduced NO
formation from char-N, increased
volatile-N formation and increased
volatile-N to N2 conversion

30/11/2018 © The University of Sheffield
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Sl Air + OF 28 200 kW,,

Sheffield.

Impact of Injecting NO into Each Stream on NO
Reburning
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Nl Air + OF 28 200 kW,
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Impact of Near-Burner Stoichiometry on NO
Reburning
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Comparison of NO, Emission Rate with NO
‘Recycling’

NO, (mg/MJ)
(5]
S

200 400

NO Injected (mg/MJ) AWORLD

TOP 100

30/11/2018  © The University of Sheffield UNIVERSITY




= Rl OF 27 + OF 30 170 kw,, [C7E3H
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Impact of NO ‘recycling’” and Burner Staging on
Combustion
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Impact of NO ‘Recycling’ on Radial Profile of Key
Flame Constituents (A: 0.64)
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Impact of Varied Burner Staging Environments
on Radial Profile of Key Flame Constituents
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Impact of Varied Burner Staging Environments
on Radial Profile of Key Flame Constituents
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Impact of Varied Burner Staging Environments
on Axial Profile of Key Flame Constituents
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Comparison of burner staging impact on oxy flames and air flames:
e Decreased sensitivity to burner staging
e Prominently reduced NOx formation

e Reduced unburned carbon in ash

Comparison of burner staging impact on different oxy flames:
e Reduced NOx formation at higher O2 concentration
e Increased NOx reduction at higher O2 concentration

e Recycled NO is almost immediately destroyed (A), therefore
control of by-products in the reducing zone (B) is very favourable

Adaptesd from: Ochi, K.,

Kiyama, K., Yoshizako, H.,

Okazaki, H., Taniguchi, M.

(2009) Latest low-NOx

Rapid ignition In-flame Oxidation combustion technology for AWORLD
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