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1.1 Importance of ignition

» Burners are designed to meet the specification of a design coal.

» Coal cost and availability fluctuates in the market

Change in
ignition and
flame stability

Changes flame

Possible Solution aerodynamics

e Computational fluid dynamics (CFD) is a tool which helps in
visualising complex fluid flows by solving mathematical equations.

« Aim:
» To do a sensitivity analysis on devolatilisation model.
« To simulate single particle volatiles ignition.

of The ASME, 123(1):32-38, 2001.
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[1] M Taniguchi, H Okazaki, H Kobayashi, S Azuhata, H Miyadera, H Muto, T Tsumura, et al. Pyrolysis and ignition characteristics of pulverized coal particles. Journal of Energy Resources Technology-Transactions
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1.2. Ignition phenomena
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Single particle ignition [2]

[2.] E. J. Anthony and F. Preto, Pressurized
combustion in FBC systems, in Pressurised Fluid Bed
Combustion. Glasgow: Blackie, 1995

Ignition in a furnace
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1.3 Experimental studies

o 1 1
0 100 200
Paticle dimneter, micometers

Region defining ignition mechanism [3]

[3] H Ju"ntgen and KH Van Heek. An update of german non-isothermal coal pyrolysis work. Fuel

Processing Technology, 2(4):261-293, 1979.
[4] Reza Khatami, Chris Stivers, Kulbhushan Joshi, Yiannis A Levendis, and Adel F Sarofim. Combustion

behavior of single particles from three different coal ranks and from sugar cane bagasse in 0 2/n 2 and o
2/co 2 atmospheres. Combustion and flame, 159(3):1253-1271, 2012.
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Work done by Khatami et al in drop tube furnace [4]
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2. Different devolatilisation models
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2.1 CPD (Chemical Percolation Devolatilisation DOOSAN

model)

 [tis an open source model developed by Sandia National Lab and

University of Utah [7]
|t describes the devolatilization behaviour of rapidly heated coal based

on the chemical structure of the parent coal.

Proximate

and
Ultimate *Provided by Industry

analysis
+Based on correlations of NMR _
é3? I\:I\:IR 30 USA coals Analysis +Based on Experiments
AL EUlS *Interpolation

'n}i’Ut «Ultimate analysis.

S LCNMR parameters.
Final +Nitrogen released during Devolatilisation.
USRS The amount of volatiles released.

[7]. T. H. Fletcher, A. R. Kerstein, R. J. Pugmire, M. S. Solum, and D. M. Grant, “Chemical Percolation Model for Devolatilisation . Direct Use of 13C NMR Data To Predict Effects of Coal Type,” Energy &
Fuels, vol. 6, no. 10, pp. 414-431, 1992.
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2.2 FG-DVC (The Functional Group,
Depolymerisation, Vaporisation, Cross Linking
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» The code for this model was developed by Solomon and workers [8] and requires licencing.

« The FG-DVC requires the ultimate analysis for the coal as input but better results are obtained if the functional
group data for the coal is used.

Linear
Interpolation gives Advantage:
Coal Data File Instruct It gives detailed final gas species.
Ultimate Coal Kinetics File  fjle(Boundary Disadvantage:
Analysis Coal Polymer File Conditions)

It gives higher error if operated without

sufficient data (functional group).
» - O »

Detailed
functional
group file

available e.g.
TG-FTIR

Output Results

[8]. P. R. Solomon and M. A. Serio, “A characterization method and model for predicting coal conversion behaviour. Reply to Herod, A. and Kandiyoti, R. Fuel 1993, 72, 469,” Fuel, vol. 73, no. 8, p. 1371,
1994,
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3. Sensitivity analysis on different
devolatilisation model
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3.1 Experimental Data
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The data provided in [9] are as follows:
« TGA proximate analysis (Ash df and VM daf basis)
« Elemental analysis daf basis (C,H and N)

« Measured values of:
* High Temperature \Volatile Yield
* Nitrogen release.

Expeniment Type High Temperature Wire Mesh (HTWM)
Heating Rate 10000 K/s
Coal Country of TOGA micro-proximate anal vsis Elemental analysis (% daf) HTWM volatile Volatile N -
P - i - Final Temperature 1873.15K
origin Ash (W% db) VM (wi% daf) C H N yleld (% daf) (%coal N)
1 VEN 43 38.3 83.0 5.5 18 543 582 Hold Time 2s
2 COL 94 386 2.8 56 1.8 59.1 622
3 CoL 3.0 38.5 774 5.2 16 60.7 742 Amount of Coal 10-12mg
Size of the Coal 125 -150 um

Coal origins, properties and high temperature wire mesh test results[9].

HTWM devolatilisation experimental conditions for the 36 coals [9].

[9]. C. K. Man, J. R. Gibbins, J. G. Witkamp, and J. Zhang, “Coal characterisation for NOx prediction in air-staged combustion of pulverised coals,” in Fuel, 2005, vol. 84, no. 17, pp. 2190-2195.
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3.2 Comparison of the interpolating coals
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Coalification chart of the 30 coals used for the CPD and the coals under investigation
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Position of the 36 coals on the triangular mesh of the FG-DVC.
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3.3 High Temperature Volatiles Predictions
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Volatile Predicted by PC-COAL
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4. Single particle Ignition modelling
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4.1 Experimental data for the coal [8]

|~ Gas species probo Parameter Pine bark Wheat straw Bituminous
Thermocouple /| coal
probe

High-speed

Proximate (wt % as received)

Optical .
McKenna Moisture 13.9 8.9 1.6
flat flame
burner
\olatile matter 58.9 64.9 37.6
Fixed carbon 25.9 11.5 58.8
Ash 1.3 14.7 2.0
(1) - Water in Ultimate (Wt% as received)
(2) - Water out
Carbon 47.8 39.4 76.9
CHgy N2/O2
Hydrogen 4.3 5.2 5.1
Nitrogen 0.3 0.5 1.6
Fuel type Density(kg/m”3) Specific Diameter(um)
heat(J/kgK) Sulphur <0.02 <0.02 0.7
Oxygen 324 31.3 12.1
B't‘:m'“ous 1300 1680 80-90 Low heating 171 18.8 32.7
coa value(MJ/kQ)

[8] de Barros Magalhae, Duarte Nuno Matos. "Ignition behaviour of single biomass and coal particles." European Combustion Meeting. 2003.
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4.2 Fluent case

« 2D Axisymmetric geometry

» 338783 cells, structured mesh

* Maximum aspect ratio 7.7

« URANS

* Viscous model: Laminar

» Reactions: Volumetric, 2-step

» Turbulence —Chemistry Interaction: Finite rate
 Devolatilisation Model: CPD

» \olatiles composition: CxHyOzNaSb

Gas temperature profile
2000
1800
1600
< 1400
@ 1200 —— 1500K simulation
>
© 1000 ——1575 simulation
(5]
g 800 —— 1650 simulation
e 600 1700 simulation
400 . .
—— 1800 simulation
200
0
0 10 20 30 40
Height (mm)
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Flame products -

Tinlet = 1500K
Twall = 1500K
Air
>
Operating conditions

Parameter Test 1 Test 2 Test 3 Test 4 Test 5
Thermal input (kW) 0.6 0.8 1 1.7 2
Methane flow rate
{dmafmln} 1.1 14 1.9 3 3.5
Transport air flow rate (dm®min) 0.14
Primary air flow rate
{dmafmin} 15.5 19 251 40.5 475
Excess air coefficient (A) 1.4
Mean gas temperature
in the ignition zone (K) 1500 1575 1650 1700 1800
Mean O; concentration
in the ignition zone 7.6

(dry vol. %)
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4.3 Results for ignition delay
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Ignition delay for bituminous coal
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4.4 Impact of Oxy-fuel conditions
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5. Conclusion and further work o (LDOOSAN

» Three network models for predicting devolatilisation behaviour of coals has been evaluated and compared against
experimental data of 36 different coals.

« The PC-Coal Lab covers a wider range of coals for correlation compared to the other two models whereas the FG-
DVC accommodates very few coals, thus making it the least effective model for investigating the devolatilisation
behaviour of coals.

« The numerical model is capable of predicting the ignition trends when compared to experiments for variation in gas
temperature.

« The model is also capable to predict trends on switching from air to oxy-fuel.

Further work

« To simulate heterogenous ignition.
 Include more reactions to improve the accuracy of the ignition point.

» Validate the model for variation in size and solid fuels such as biomass.

EPSRC
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Thank you for listening
Questions?
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