What are Metal Organic Frameworks? - Metal ion bound to organic linkers to form a controlled geometrical structure - Extremely high Surface Areas - Controlled porosity - Can preferentially adsorb certain gases - Potential end use as 2nd/3rd gen CCS sorbents #### **Liquid phase separations** Chem. Soc. Rev. 2014, 43, 5766 #### **Natural Gas Storage system** #### **Photovoltaics** **MOFs** Chem. Soc. Rev. 2009, **38**, 1450 Catalysis Active Sites : and/or 0 Angew. Chemie Int. Ed. 2015, 54, 7201 # HEADING TO MARKET WITH MOFS For METAL-ORGANIC FRAMEWORKS, lab-scale research is brisk as commercialization begins MITCH JACOBY, C&EN CHICAGO #### Basolite[®] C 300 1 Product Result | Match Criteria: Product Name Synonym: Copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF, HKUST-1 Empirical Formula (Hill Notation): C₁₈H₆Cu₃O₁₂ | Molecular Weight: 604.87 #### e[®] Z1200 esult | Match Criteria: Product Name Synonym: 2-Methylimidazole zinc salt, ZIF-8 CH₃ > Molecular Weight: 227.58 | CAS Number: 59061-53-9 Empirical Formula (Hill Notation): C₈H₁₀N₄Zn produced by BASF (Aldrich) | ıck Size | Availability | Price (GBP |) Quar | |----------|--------------|------------|--------| | 10G | Available 1 | | | | 100G | Estimated | 4 470 00 | 0 | | 500G | Only 5 lef | 4,470.00 | U | #### asolite[®] A100 roduct Result | Match Criteria: Product Name nonym: Aluminum terephthalate, MIL-53(AI) pirical Formula (Hill Notation): C₈H₅AlO₅ | Molecular Weight: 208.10 ### Continuous production technology... #### Continuous Production of MOFs #### General Synthesis Method - HKUST-1 (Cu) - CPO-27 (Ni) - ZIF-8 (Zn) - ZIF-67 (Co) - MOF-5 (Zn) - UiO-66-COOH (Zr) ### Instant MOFs: continuous synthesis of metal organic frameworks by rapid solvent mixing† Miquel Gimeno-Fabra, Alexis S. Munn, Lee A. Stevens, Trevor C. Drage, a David M. Grant, Reza J. Kashtiban, Jeremy Sloan, Edward Lester and Richard I. Walton*b Received 22nd June 2012, Accepted 7th September 2012 DOI: 10.1039/c2cc34493a Table 1 Textural properties of HKUST-1 and Basolite C300 (Sigma-Aldrich). $V_{\rm p}$ is total pore volume at 0.95 $p/p^{\rm o}$, and $V_{\rm m}$ micropore volume by t-plot analysis (Harkins and Jura) | Sample | $BET_{SA}(m^2g^{-1})$ | $V_{\rm p}~({\rm cm}^3~{\rm g}^{-1})$ | $V_{\rm m}~({\rm cm}^3~{\rm g}^{-1})$ | |---------------|-----------------------|---------------------------------------|---------------------------------------| | HKUST-1 | 1950
1694 | 0.80
0.72 | 0.77 | | Basolite C300 | 1694 | 0.72 | 0.70 | # HKUST-1 "Hong Kong University of Science and Technology" Cu²⁺ (square pyramidal dimer) # HKUST-1: $Cu_2(C_6H_3-(CO_2)_3)\cdot nH_2O$ Synthesis based on standard batch reaction BET Surface Area = $1954 \text{ m}^2/\text{g}$ **CPO-27** "Coordination Polymer of Oslo" Ni²⁺ (square pyramidal) ### CPO-27: Ni(CO₂-C₆H₂(OH)₂-CO₂).nH₂O BET Surface Area = $1030 \text{ m}^2/\text{g}$ HRTEM: 0.15 M ### ZIF-8: $Zn(C_4N_2H_5)_2$ 2θ (°) ### ZIF-8: Comparison (Stability) No thermal treatment 5hrs@450 °C 5hrs@500 °C 5hrs@550 °C - Stability tests in nitrogen - Average particle size: - − Nott ZIF-8 \approx 4 μm - Basolite ≈ 500 nm ### ZIF-8: Comparison (Stability) No thermal treatment 5hrs@450 °C 5hrs@500 °C 5hrs@550 °C - Stability tests in nitrogen - Average particle size: - Nott ZIF-8 ≈ 4 μ m - Basolite ≈ 500 nm Nott ZIF-8 retains structure to higher temperatures than commercial analogue ## ZIF-8: CO₂ cycling ### Other MOFs ### What is holding everything back? - Very expensive MOFs - Small scale production of MOFs - Presentation of the MOFs e.g. membranes/pellets etc... - Poor understanding of the LCA of CCS with MOFs #### ChemComm #### COMMUNICATION # Large-scale continuous hydrothermal production and activation of ZIF-8† Cite this: DOI: 10.1039/c5cc04636j A. S. Munn, P. W. Dunne, S. V. Y. Tang and E. H. Lester* Received 5th June 2015, Fig. 4 Growth of truncated rhombic dodecahedron particles to form cubic particles. ### ZIF-8: Scale-up Relative Pressure p/p° #### 1000 ton/annum plant built as part of the FP7 funded **SHYMAN** project #### Conclusions - The real challenges for 2nd and 3rd generation sorbents are around production scales, activation and pelletisation. - Without any meaningful demonstration of the potential for these materials, there will only be slow progress away from either no capture (with significant environmental penalties) or amine based 1st generation capture (with significant operating penalties).