

What are Metal Organic Frameworks?

- Metal ion bound to organic linkers to form a controlled geometrical structure
- Extremely high Surface Areas
- Controlled porosity
- Can preferentially adsorb certain gases
- Potential end use as 2nd/3rd gen CCS sorbents

Liquid phase separations

Chem. Soc. Rev. 2014, 43, 5766

Natural Gas Storage system

Photovoltaics

MOFs

Chem. Soc. Rev. 2009, **38**, 1450

Catalysis

Active Sites : and/or 0

Angew. Chemie Int. Ed. 2015, 54, 7201

HEADING TO MARKET WITH MOFS

For METAL-ORGANIC FRAMEWORKS, lab-scale research is brisk as commercialization begins MITCH JACOBY, C&EN CHICAGO

Basolite[®] C 300

1 Product Result | Match Criteria: Product Name

Synonym: Copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF, HKUST-1

Empirical Formula (Hill Notation): C₁₈H₆Cu₃O₁₂ | Molecular Weight: 604.87

e[®] Z1200

esult | Match Criteria: Product Name

Synonym: 2-Methylimidazole zinc salt, ZIF-8 CH₃

> Molecular Weight: 227.58 | CAS Number: 59061-53-9 Empirical Formula (Hill Notation): C₈H₁₀N₄Zn

produced by BASF (Aldrich)

ıck Size	Availability	Price (GBP) Quar
10G	Available 1		
100G	Estimated	4 470 00	0
500G	Only 5 lef	4,470.00	U

asolite[®] A100

roduct Result | Match Criteria: Product Name

nonym: Aluminum terephthalate, MIL-53(AI)

pirical Formula (Hill Notation): C₈H₅AlO₅ | Molecular Weight: 208.10

Continuous production technology...

Continuous Production of MOFs

General Synthesis Method

- HKUST-1 (Cu)
- CPO-27 (Ni)
- ZIF-8 (Zn)
- ZIF-67 (Co)
- MOF-5 (Zn)
- UiO-66-COOH (Zr)

Instant MOFs: continuous synthesis of metal organic frameworks by rapid solvent mixing†

Miquel Gimeno-Fabra, Alexis S. Munn, Lee A. Stevens, Trevor C. Drage, a

David M. Grant, Reza J. Kashtiban, Jeremy Sloan, Edward Lester and

Richard I. Walton*b

Received 22nd June 2012, Accepted 7th September 2012

DOI: 10.1039/c2cc34493a

Table 1 Textural properties of HKUST-1 and Basolite C300 (Sigma-Aldrich). $V_{\rm p}$ is total pore volume at 0.95 $p/p^{\rm o}$, and $V_{\rm m}$ micropore volume by t-plot analysis (Harkins and Jura)

Sample	$BET_{SA}(m^2g^{-1})$	$V_{\rm p}~({\rm cm}^3~{\rm g}^{-1})$	$V_{\rm m}~({\rm cm}^3~{\rm g}^{-1})$
HKUST-1	1950 1694	0.80 0.72	0.77
Basolite C300	1694	0.72	0.70

HKUST-1

"Hong Kong University of Science and Technology"

Cu²⁺ (square pyramidal dimer)

HKUST-1: $Cu_2(C_6H_3-(CO_2)_3)\cdot nH_2O$

Synthesis based on standard batch reaction

BET Surface Area = $1954 \text{ m}^2/\text{g}$

CPO-27

"Coordination Polymer of Oslo"

Ni²⁺ (square pyramidal)

CPO-27: Ni(CO₂-C₆H₂(OH)₂-CO₂).nH₂O

BET Surface Area = $1030 \text{ m}^2/\text{g}$

HRTEM: 0.15 M

ZIF-8: $Zn(C_4N_2H_5)_2$

2θ (°)

ZIF-8: Comparison (Stability)

No thermal treatment

5hrs@450 °C

5hrs@500 °C

5hrs@550 °C

- Stability tests in nitrogen
- Average particle size:
 - − Nott ZIF-8 \approx 4 μm
 - Basolite ≈ 500 nm

ZIF-8: Comparison (Stability)

No thermal treatment

5hrs@450 °C

5hrs@500 °C

5hrs@550 °C

- Stability tests in nitrogen
- Average particle size:
 - Nott ZIF-8 ≈ 4 μ m
 - Basolite ≈ 500 nm

 Nott ZIF-8 retains structure to higher temperatures than commercial analogue

ZIF-8: CO₂ cycling

Other MOFs

What is holding everything back?

- Very expensive MOFs
- Small scale production of MOFs
- Presentation of the MOFs e.g. membranes/pellets etc...
- Poor understanding of the LCA of CCS with MOFs

ChemComm

COMMUNICATION

Large-scale continuous hydrothermal production and activation of ZIF-8†

Cite this: DOI: 10.1039/c5cc04636j

A. S. Munn, P. W. Dunne, S. V. Y. Tang and E. H. Lester*

Received 5th June 2015,

Fig. 4 Growth of truncated rhombic dodecahedron particles to form cubic particles.

ZIF-8: Scale-up

Relative Pressure p/p°

1000 ton/annum plant built as part of the FP7 funded **SHYMAN** project

Conclusions

- The real challenges for 2nd and 3rd generation sorbents are around production scales, activation and pelletisation.
- Without any meaningful demonstration of the potential for these materials, there will only be slow progress away from either no capture (with significant environmental penalties) or amine based 1st generation capture (with significant operating penalties).