Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification Overview</td>
<td>04</td>
</tr>
<tr>
<td>Features & Benefits</td>
<td>08</td>
</tr>
<tr>
<td>Energy Ratings</td>
<td>09</td>
</tr>
<tr>
<td>Optional Extras</td>
<td>10</td>
</tr>
<tr>
<td>Aerogel</td>
<td>15</td>
</tr>
<tr>
<td>Size Guidelines</td>
<td>16</td>
</tr>
<tr>
<td>Gaskets</td>
<td>25</td>
</tr>
<tr>
<td>Technical Drawings</td>
<td>27</td>
</tr>
<tr>
<td>Thermal Certificates</td>
<td>47</td>
</tr>
<tr>
<td>Installation Guide</td>
<td>50</td>
</tr>
<tr>
<td>Notes</td>
<td>56</td>
</tr>
</tbody>
</table>
Specification Overview

Aluminium Window

External view of Origin Window

![Diagram of Aluminium Window Specifications]

- **91mm**
- **80mm**
- **91mm**
- **21mm**
- **8.8mm**
- **148mm**
- **74mm to mid point**
- **33.5mm to mid point**
- **50mm**
- **Cill adds 25mm**
- **80mm**
Profile Specification

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Frame Depth</td>
<td>80mm</td>
</tr>
<tr>
<td>Sash Depth</td>
<td>80mm</td>
</tr>
<tr>
<td>Frame and Sash Sightline</td>
<td>91mm</td>
</tr>
<tr>
<td>Mullion and Sash Sightline</td>
<td>148mm</td>
</tr>
</tbody>
</table>

Options and extras

- Fixed, casement, bay and gable configurations
- Accommodates double and triple glazing with unit sizes of 28mm or 44mm
- Open out or fixed
- 95, 155 and 185mm cills
- Available in over 150 different colours
- Fixing straps
- 15 or 35mm add-ons
- Restrictor hooks
- Egress hardware
- Aerogel insulation
- Window couplers
- Black, white and colour-coded gaskets available
- Door to window coupling
- 2500EA Trickle vents available
- Marine finish
- Comprehensive handle range, including colour matched options

Origin Window Specification

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Rating</td>
<td>Origin</td>
</tr>
<tr>
<td>From B to A++ (see page 9)</td>
<td></td>
</tr>
<tr>
<td>u-Value</td>
<td>Up to 0.9 W/Km2K</td>
</tr>
<tr>
<td>Air</td>
<td>Class 4 (600Pa)</td>
</tr>
<tr>
<td>Wind</td>
<td>Class B5 (2000Pa)</td>
</tr>
<tr>
<td>Water</td>
<td>Class E1500 (1500Pa)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Side Hung</th>
<th>Top Hung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Height</td>
<td>Max Height</td>
</tr>
<tr>
<td>1800</td>
<td>1500</td>
</tr>
<tr>
<td>Max Width</td>
<td>Max Width</td>
</tr>
<tr>
<td>1000</td>
<td>1500</td>
</tr>
<tr>
<td>Max Weight</td>
<td>Max Weight</td>
</tr>
<tr>
<td>50kg</td>
<td>50kg</td>
</tr>
</tbody>
</table>

Features

- 20 year guarantee
- Internally and externally flush casement. The sash closes into the frame sitting in line with the inside and outside of the window
- Chamfered bead
- Mechanically double crimped corners
- Easi-clean mechanism on side hung configurations*
 *between 400-700mm
- Yale Encloser locking mechanism
- Stainless steel friction stay hinges
Origin’s Popular Colour Range is available on a one week lead time

Available in the following colour finishes

1 week lead time

Origin’s Popular Colour Range is available on a one week lead time

Dark Silver Metallic (9007M)

Black Grey (7021M) Jet Black (9005MI)

Slate Grey (7015M)

Hipca White (9910G) Anthracite Grey (7016M)

9910G / 7016M (Dual Colour)

This popular dual colour option is available on a 1 week lead time

Dual Colour options available on a 3 week lead time
Origin’s 4 woodgrain finishes are also available in just 1 week

Origin’s special RAL colours are available on a 3 week lead time

Lead Times

<table>
<thead>
<tr>
<th>Service</th>
<th>Lead Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock colour casement windows</td>
<td>1 week</td>
</tr>
<tr>
<td>Non-stock colour windows</td>
<td>3 weeks</td>
</tr>
<tr>
<td>Stock colour gables</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Non-stock colour gables</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Aerogel windows</td>
<td>4 weeks</td>
</tr>
</tbody>
</table>
Features and Benefits

Security

The Origin Window is PAS 24 certified.

Origin casement windows (1500mm x 2500mm double top hung) have been impact tested up to 2633Pa and fixed windows (1525mm x 2641mm single panel) tested to 3591Pa without failure or any sign of weakness in the crimps.

Origin hinges are made of ferritic stainless steel (to BS EN 10088-2 Grade, previously known as 304) for enhanced corrosion resistance. The hinges are tested to 50,000 cycles and feature a friction adjustment without metal to metal contact ensuring minimum wear.

Hinge guards featuring patented anti-slip & lock technology are fitted as standard along the hinged side of the window.

The Yale Encloser lock is fitted to accurately align with the keeps. The cams are manufactured to be finely adjustable, if necessary.

Thermal efficiency

The Origin Window is fitted as standard with a 35mm polyamide thermal break featuring interlocking barriers that minimise air flow through the system.

A bespoke cavity gasket is fitted into the internal chamber of the window between the sash and the frame (excl. the locking side) in order to further improve thermal efficiency.

The Origin Window is available with Aerogel as an optional upgrade. Aerogel is the most insulating material on the planet and allows the Origin Window to achieve a Window Energy Rating of A++ or up to a 0.9 u-Value.

For more information on Aerogel, visit www.origin-global.com/aluminium-windows

See the Window Energy Rating Specification Sheet for certified test results.
The following profiles, beads and glass specifications must be adhered to in order to achieve the associated energy rating.

<table>
<thead>
<tr>
<th>BFRC Energy Rating</th>
<th>B-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead</td>
<td>28mm (ie. double glazed)</td>
</tr>
<tr>
<td>Glass Spec</td>
<td>4mm Diamant - 20mm 90% Argon - 4mm Planitherm Total +</td>
</tr>
<tr>
<td>Spacer Bar</td>
<td>20mm Swiss Ultimate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BFRC Energy Rating</th>
<th>A+6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Spec</td>
<td>Origin Window Aerogel (frame:WA03-04, Sash: WA05-06)</td>
</tr>
<tr>
<td>Bead</td>
<td>28mm (ie. double glazed)</td>
</tr>
<tr>
<td>Glass Spec</td>
<td>4mm Diamant - 20mm 90% Argon - 4mm Planitherm Total +</td>
</tr>
<tr>
<td>Spacer Bar</td>
<td>20mm Swiss Ultimate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BFRC Energy Rating</th>
<th>A+9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead</td>
<td>44mm (ie. triple glazed)</td>
</tr>
<tr>
<td>Glass Spec</td>
<td>4mm Diamant - 2x16mm 90% Argon - 2x4mm Planitherm Total +</td>
</tr>
<tr>
<td>Spacer Bar</td>
<td>2 x 16mm Swiss Ultimate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BFRC Energy Rating</th>
<th>A++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Spec</td>
<td>Origin Window Aerogel (frame:WA03-04, Sash: WA05-06)</td>
</tr>
<tr>
<td>Bead</td>
<td>44mm (ie. triple glazed)</td>
</tr>
<tr>
<td>Glass Spec</td>
<td>4mm Diamant - 2x16mm 90% Argon - 2x4mm Planitherm Total +</td>
</tr>
<tr>
<td>Spacer Bar</td>
<td>2 x 16mm Swiss Ultimate</td>
</tr>
</tbody>
</table>
Optional Extras

Restrictor hooks

Variable restrictor hooks limit the sash opening to 70mm but can be unhooked to open the window fully.
Trickle vents

Trickle vents have to meet the minimum air flow rates as defined in the British Building Regulations (see specifics below).

Trickle vents can be fitted through the sash or through a 35mm add-on

(See page 41 and page 42 for cross-section drawings)

Additional Information

England and Wales:
Equivalent Air Rates of 2500EA and 5000 EA as required by Approved Document “F” 2006 for England & Wales.

Scotland and Northern Ireland:
2000, 3000, 4000, 6000 & 8000 free air models available for use in Scotland and Northern Ireland.
Optional Extras

Egress application

Approved Document B of the Building Regulations 2010 specifies the following provisions with regards to egress application:

Section 2.8 Emergency egress windows and external doors

Any window provided for emergency egress purposes and any external door provided for escape should comply with the following conditions:

a. The window should have an unobstructed openable area that is at least 0.33m² and at least 450mm high and 450mm wide (the route through the window may be at an angle rather than straight through). The bottom of the openable area should be no more than 1000mm above the floor; and

b. the window or door should enable the person escaping to reach a place free from danger and free from fire. This is a matter for judgement in each case, but, in general, a courtyard or back garden from which there is no exit other than through other buildings would have to be at least as deep as the dwelling house is high to be acceptable.

Note 1. Approved Document K protection from falling, collision and impact specifies a minimum guarding height of 800mm, except in the case of a window in a roof where the bottom of the opening may be 600mm above the floor.

Note 2. Locks (with or without removable keys) and stays may be fitted to egress windows, subject to the stay being fitted with a release catch, which may be child resistant.

Note 3. Windows should be designed such that they will remain in the open position without needing to be held by a person making their escape.
Windows – Side Hung
Sash Egress Dimensions

Glazing Weight 26.4kg/m²

Glazing Weight 17.6kg/m²

Sash offsets
- Mullion to Mullion = 14mm
- Mullion to Frame = 30mm
- Frame to Frame = 46mm
Windows - Top Hung
Sash Egress Dimensions

Glazing Weight 26.4kg/m²

Glazing Weight 17.6kg/m²

Sash offsets
- Mullion to Mullion = 14mm
- Mullion to Frame = 30mm
- Frame to Frame = 46mm

Generic 44mm Triple Glazed

Generic 28mm Double Glazed
Introducing Aerogel

What is Aerogel?

Aerogel is a synthetic highly porous solid material derived from a silica dioxide gel in which the liquid has been extracted and replaced with air. The gel is critically heated and the liquid evaporated, leaving a bonded, cross-linked macromolecule framework.

The name Aerogel may be misleading at first, as aerogels are dry, rigid or elastic foam-like materials but the name originates from the fact that aerogels are usually derived from wet gels, physically similar to edible jelly.

A brief history of Aerogel

Aerogel is believed to have been discovered in 1931 as a result of a bet between two chemists, Samuel Kistler and Charles Learned, over who could replace the liquid in jelly with gas without causing the remaining solid to shrink. It was Kistler that first succeeded.

Since then aerogels have been used in a wide range of applications from space exploration (Stardust launch and Mars exploration rovers) to commercial manufacture of building insulation, clothing, tennis rackets, supercapacitors and thickening agents in cosmetics.

Due to the expensive processes involved in producing aerogel, commercial manufacture of aerogel has only become viable since the dawn of the 21st century.

Why is Aerogel such a good insulator?

Aerogel can withstand very high temperatures, delivering 39 times more insulation than fibreglass. Aerogels are fantastic insulators because they limit two of the three methods of heat transfer (convection, conduction and radiation). Firstly, they are excellent conductive insulators because they are composed of 99.8% gas (air) and gases are very poor at conducting heat. The remaining 0.02% of the aerogel is made of silica, which is incidentally also a poor conductor of heat. Secondly the lattice structure of the solid is highly effective at minimising convection because air cannot circulate through it. While aerogels are poor radiative insulators (infrared radiation transfers heat) within an aluminium window frame, the aluminium blocks any infrared radiation.
Size Guidelines

Minimum dimensions

Fixed frame

Dummy sash
Casement Window:
Min height = 385mm with
cill and 35mm
add-on
Min height = 350 with
just a cill
Min height = 325mm just
the frame

Top hung minimum
Min height = 400mm
Min width = 400mm

Side hung minimum
Min height = 400mm
Min width = 400mm

Maximum sash dimensions

Maximum sash weight 40kg

Maximum sash weight 50kg

Side Hung Maximum
Dimensions

Top Hung Maximum
Dimensions
Windows – Side Hung Sash
Maximum Dimensions

Glazing Weight 26.4kg/m²

Glazing Weight 17.6kg/m²

Sash offsets

- Mullion to Mullion = 14mm
- Mullion to Frame = 30mm
- Frame to Frame = 46mm

Generic 44mm Triple Glazed

Generic 28mm Double Glazed
Windows – Top Hung Sash
Maximum Dimensions

Glazing Weight 26.4kg/m²

Glazing Weight 17.6kg/m²

Sash offsets
- Mullion to Mullion = 14mm
- Mullion to Frame = 30mm
- Frame to Frame = 46mm

Generic 44mm Triple Glazed

Generic 28mm Double Glazed
Fixed frame maximum dimensions

Maximum area = 4.8m²
Maximum height/width = 4.8m

Example 1

Maximum fixed width and area
Maximum area = 4800mm x 1000mm = 4.8m²
Maximum width = 4800mm

Example 2

Maximum fixed height and area
Maximum area = 4800mm x 1000mm = 4.8m²
Maximum height = 4800mm

Example 3

Maximum fixed area
Maximum area = 2200mm x 2200mm = approx 4.8m²
Maximum height = 4800mm
Size Guidelines

Maximum mullion/transom length

Maximum glazed area next to mullion/transom:
\[= 3.15 \text{m}^2 \] Maximum length: \[= 2100 \text{mm} \]

Example 1

Maximum mullion length and glazed area next to a mullion/transom

Maximum glazed area next to mullion/transom: \[1500 \text{mm} \times 2100 \text{mm} = 3.15 \text{m}^2\]
Maximum height: \[2100 \text{mm}\]
(Window width of 4500mm is under maximum of 4800mm)

Example 2

Maximum glazed area next to a mullion or transom

Maximum glazed area next to mullion/transom: \[2400 \text{mm} \times 1430 \text{mm} = 3.15 \text{m}^2\]
Maximum window width: \[4800 \text{mm}\]
(Mullion is under maximum height of 2100mm)

Example 3

Maximum transom

Transom under maximum width of 2100mm
Maximum glazed area next to mullion/transom
\[2100 \text{mm} \times 1500 \text{mm} = 3.15 \text{m}^2\]
Maximum coupled length

Maximum coupled length: = 2.5m

Example 1

Maximum coupled height with maximum individual glazed area.

Maximum coupled height = 2500mm
Maximum glazed area = 1920mm x 2500mm = 4.8m²
(Overall width at 5760mm is fine as each frame is coupled)

Example 2

Maximum coupled height with a maximum transom

Maximum coupled height = 2500mm
Maximum transom length = 2100mm
Maximum glazed area next to mullion/transom = 2100mm x 1500mm = 3.15m²

Example 3

Maximum coupled width

Maximum glazed area = 2500mm x 1920mm = 4.8m²
Maximum coupled length = 2500mm

Example 4

Maximum coupled gable width, minimum gable corner angle and maximum mullion

Maximum coupled length = 2500mm
Maximum mullion length = 2100mm
Tightest gable corner angle = 20°

Example 5

Maximum coupled width and height with tightest gable corner angle

Maximum coupled width and height = 2500mm
Tightest gable corner angle = 20°
Size Guidelines

Gables

Minimum Gable Angle 20°

Angles less than 90° for 28mm units only. 44mm units require an up-stand and cannot be manufactured with angles less than 90°.

Gables mullion restrictions

Mullions cannot be joined to another joint or apex in the frame:

Mullions cannot be joined to an apex like this

In this instance, the gable must be made out of two parts and coupled together.
Minimum gable up-stand

- Minimum Gable Up-stand = 100mm
- Minimum bead = 100mm

The minimum up-stand on a gable is 100mm.

Similarly, in the diagram above, if a mullion splits a small section of frame, there must be at least 100mm of profile either side of the mullion.

Maximum gable size

- Maximum mullion length 2100mm
- Maximum profile length 4800mm
- Maximum coupled length 2500mm
Minimum transom drop

415 with 15mm frame extension
435 with 35mm frame extension

Minimum sash width with trickle vent

Bay window tightest angle

Tightest bay angle 117°
Gaskets

<table>
<thead>
<tr>
<th>Frame Gasket (Internally Fitted)</th>
<th>Sash Gasket (Externally Fitted)</th>
<th>Cavity Gasket</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Frame Gasket Icon]</td>
<td>![Sash Gasket Icon]</td>
<td>![Cavity Gasket Icon]</td>
</tr>
<tr>
<td>4028 BLACK</td>
<td>QL4636 BLACK</td>
<td>BLACK</td>
</tr>
<tr>
<td>Glazing Rebate (Externally Fitted)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>![Glazing Rebate Icon]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2018 BLACK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame Wedge 44mm (Internally Fitted)</td>
<td>Frame Wedge 28mm (Internally Fitted)</td>
<td>Sash Wedge 28/44mm (Internally Fitted)</td>
</tr>
<tr>
<td>![Frame Wedge 44mm Icon]</td>
<td>![Frame Wedge 28mm Icon]</td>
<td>![Sash Wedge 28/44mm Icon]</td>
</tr>
<tr>
<td>W474 BLACK, WHITE, COLOUR-CODED</td>
<td>W473P BLACK, WHITE, COLOUR-CODED</td>
<td>W488 BLACK, WHITE, COLOUR-CODED</td>
</tr>
</tbody>
</table>

Key

The colour-coded gasket option includes the following colours:
7015, 7016, light grey, white, light oak, bronze and chestnut brown.
The cavity gasket not only provides an internal seal for the window, but more importantly, is a critical component for reducing the flow of air between the frame and the sash. This improves the thermal performance of the window.
Technical Drawings

Awning

1. Cill frame and sash (pg.26)

Casement

1. Frame and sash (no cill, pg.26)

Fixed

1. Fixed frame with bead (pg.27)
Casement configurations

- Mullion and sash sightlines (pg. 28)

Mullion sightlines for fixed frames

- 35mm add on with fixed frame (pg. 30)
- Mullion sightline for vertically beaded fixed frame (pg. 29)
- 15mm add on with fixed frame (pg. 31)

Window coupler (pg. 32)
1 Cill, frame and sash
2 Fixed frame with bead
3 Mullion and sash sightlines

Sash and mullion sightlines
Scale 1:4
4 Mullion sightlines for internally beaded fixed frames

Technical Drawings
35mm add-on with fixed frame
6 15mm add-on with fixed frame
7 Window coupler

Frame Coupler

Dimensions:
- Width: 100 mm
- Height: 80 mm
- Depth: 41.43 mm

This information and drawing are the copyright of Origin Frames Limited. Copyright is reserved by them and is issued on the condition that it is not copied or disclosed by or to any unauthorised persons without prior consent of Origin Frames Limited.

All dimensions are in mm. Do not scale.
8 Window to door jamb coupler

Technical Drawings
9 Window to door track coupler
Variable bay mullion

Internal angles: 117° - 138°
11 Variable bay mullion

Internal angles: 138° – 159°
Variable bay mullion

Internal angles: 159° - 175°
13 Window to window corner post
14 Window to door corner post

- Dimensions:
 - Window to door corner post: 130 x 135 x 75 x 85 x 80 mm

- Notes:
 - All dimensions are in mm. Do not scale.
 - Technical Drawings
 - Copyright information and conditions of use apply.
Cills, bead and trim

* The 95mm Stub cill can only be prepared with concealed drainage if the water can drain away towards the outside of the reveal. There must be a gap of at least 20mm between the drainage hole and the substrate in order to ensure the water can drain effectively. The substrate must be sloped to ensure the water doesn’t drain back into the building. It is the installers responsibility to ensure the drainage outlets are clear and free to drain water away from the substrate.
35mm add-on with trickle vent

Trickle vent inside

Trickle vent outside

INSIDE

OUTSIDE
Glazing options
Thermal Simulation Report

PRODUCT
Origin Window
SIM - SOFTWARE
Win Iso 2D Pro
GLASS CENTRE PANE U/VALUE
0.5 W/m2K (44mm triple glazing)
INSULATION
AEROGEL

Thermal Transmittance:
0.9 W/(m2K)

Date: 05/11/2015

All simulations strictly in accordance with the requirements of ISO 10077-2:2015

Email: info@origin-global.com | Web: www.origin-global.com
Origin Frames Ltd, Sands 10 Industrial Estate, Hilbom Road, High Wycombe, HP12 4HS
Thermal Simulation Report

Product: Origin Window
Simulation Software: Win Iso 2D Pro
Glass Centre Pane U/Value: 0.5 W/m2K (44mm triple glazing)
Insulation: None

Thermal Transmittance:

1.1 W/(m²K)

Date: 05/11/2015

All simulations strictly in accordance with the requirements of ISO 10077-2:2015

Email: info@origin-global.com
Web: www.origin-global.com
Origin Frames Ltd, Sands 10 Industrial Estate, Hillbottom Road, High Wycombe, HP12 4HS
Thermal Simulation Report

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>Origin Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM - SOFTWARE</td>
<td>Win Iso 2D Pro</td>
</tr>
<tr>
<td>GLASS CENTRE PANNE U/VALUE</td>
<td>1.070 W/m2K (28mm double glazing)</td>
</tr>
<tr>
<td>INSULATION</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Thermal Transmittance:
1.5 W/(m2K)

Date: 05/11/2015

All simulations strictly in accordance with the requirements of ISO 10077-2:2015

Email: info@origin-global.com Web: www.origin-global.com

Origin Frames Ltd, Sands 10 Industrial Estate, Hillbottom Road, High Wycombe, HP12 4HS
Open cavities discovered between the inner and outer skins of brick or block work should be bridged or closed with an insulation material in accordance with the local building authority.

Installation

Windows should be installed in the aperture without twisting, racking or distorting.
1. Frame Fixing

Measure the opening, checking it fits with all measurements on your Origin paperwork.

1.1. Place the correct frame packers spaced at a maximum of 500mm apart along the length of the opening to create a level, well supported platform for the track/cill to sit. (Fig.1)
1.2. Using an appropriate silicone sealant, fill the ends of the cill section & install the end caps. (Fig.2)

1.3. Place the cill on the pre prepared frame packers and re-check for level. Adjust if necessary. (Fig.2)

1.4. Using a silicone sealant, seal the drainage channels adjacent to the brickwork. (Fig.2)

1.5. Run a bead of sealant along the up-stand of the cill. (Fig.2)
If using fixing straps, please skip to 1.7.

1.6. Place the window on the cill and secure into position. Wherever practical, all four corners of the frame should be secured as follows:
 • Frame fixing should be between 100mm to 150mm from the external corners.
 • Fixings should be at no greater than 600mm apart and there should be the minimum of two fixings on each jamb. On windows over 1800mm wide, central head and cill fixings should be provided. (Fig.3)

Please move to 2.1.

1.7. Secure the fixing strap into the rebate of the window with the screws provided. All four corners of the frame should be secured wherever practical.
2. Glazing

- 2.1. All insulated glass units should be examined for damages and defects before installation. (Fig.4)
- 2.2. Close the window and fully engage the lock. (Fig.4)
- 2.3. Remove the 4 glazing beads. (Fig.4)
- 2.4. Place the required packers in the bottom of the glazing chamber spaced approximately 50mm in from each corner at 90° to the window. (Fig.4)
- 2.5. Install the glass on the packers, taking care not to pinch the gasket on the outside. (Fig.4)
- 2.6. For safety, always ensure the top bead is installed first, followed by the bottom and then the side beads. (Fig.5)
- 2.7. Cut the glazing wedge gasket to length and insert between the glass unit and the glazing bead. (Fig.5)
3.1. Wherever practical, windows should be foam filled to stop air flow around the window and the surrounding aperture. (Fig.6)

3.2. If required, use trims to bridge the gap between the window and the aperture. All trim should be compatible with the material of the frame and should be colour matched where specified. (Fig.6)

3.3. The sealant should be applied against a firm backing so that it is forced against the sides of the joint during application. Best practice is to have insulating foam fill inserted wherever practical. (Fig.6)
Contact

Accounts
08448 802 371 or 01494 416895
finance@origin-global.com

Marketing
08448 802 374 or 01494 416897
marketing@origin-global.com

Sales
0808 168 5816 or 01494 686868
sales@origin-global.com

Technical
08448 802 373 or 01494 416896
technical@origin-global.com

Fleet and Logistics
08448 802 378 or 01494 416898
logistics@origin-global.com

Origin Global,
Sands 10 Industrial Estate, Hillbottom Road,
High Wycombe, Buckinghamshire, HP12 4HS
0808 168 5816
info@origin-global.com
www.origin-global.com

Origin Northern Centre of Excellence,
Taurus Park, Europa Boulevard, Westbrook,
Warrington, Cheshire, WA5 7ZT
01925 907 907
enquiry@origin-global.com
www.origin-global.com