

Parents,
These are the skills that your 6th grader should master in the first nine weeks of school.

Math

Standard	"I Can Statement"
6.NS. 1	I can plot, label, and identify fractions on a number line. I can add, subtract, and multiply fractions with whole numbers and fractions (with like and unlike denominators). Ex: $1 / 3+4 / 5,6-3 / 4,(2 / 3) \times(3 / 5)$ I can add, subtract, and multiply mixed numbers. I can convert fractions to decimals and decimals to fractions. I can divide a fraction by a fraction and interpret what the quotient means. I can solve word problems involving division of fractions by fractions. Ex: How many $3 / 4$ cup servings are in $2 / 3$ of a cup of yogurt? How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally?
6.NS.2	I can fluently divide multi-digit numbers. Ex: How many thirty-twos are in $8456 ?$
6.NS.3	I can fluently add multi-digit decimals. Ex: $72.63+4.875$ I can fluently subtract multi-digit decimals. Ex: $177.3-72.635$ I can fluently multiply multi-digit decimals. Ex: 72.3×4.87

	I can fluently divide multi-digit decimals. Ex: $14.28 \div 0.68$
6.NS. 4	I can find the greatest common factor of two whole numbers less than or equal to 100 . Ex: What is the greatest common factor (GCF) of 18 and 24? I can find the least common multiple of two whole numbers less than or equal to 12 . Ex: What is the least common multiple (LCM) of 12 and 8 ?
6.G. 1	I can calculate the area of triangles and quadrilaterals when given base and height. I can calculate base or height when given the area of a triangle or quadrilateral. I can find the area of polygons by composing them into rectangles or dividing them up into triangles and other shapes. Ex: This trapezoid can be divided into a rectangle and a triangle. To find the total area, add the area of the rectangle and the area of the triangle. I can solve real world problems using area. Ex: The lengths of the sides of a bulletin board are 4 feet by 3 feet. How many index cards measuring 4 inches by 6 inches would be needed to cover the board?
6.G. 2	I can calculate volume after packing a rectangular prism with unit cubes. Ex: A right rectangular prism has edges of $11 / 4$ inches, 1 inch, and $11 / 2$ inches. How many cubes with side lengths of $1 / 4$ inch would be needed to fill the prism? I can use the formula $V=l w h$ or $V=B h$ to calculate the volume of a right rectangular prism where $B=$ area of the base, $B=l w$.

	Ex: To find the volume of the previous example using the formula: $\mathrm{V}=\mathrm{lwh}$ $\mathrm{V}=(11 / 4)(1)(1 \mathrm{1} / 2)$
6.G.4	I can match two dimensional nets with corresponding three dimensional figures.
	Ex: The above diagram is a 2 dimensional net of a 3 dimensional cube. I can draw nets when given the name of a three-dimensional figure. I can calculate the surface area of a 3 dimensional figure using the 2 dimensional net. I can solve real world problems using nets and surface area. Ex: How much wrapping paper will I need to wrap a box that has the following dimensions: length $=8$ inches, width= 10 inches, and height $=12$ inches?

