
Building a government cloud
Concepts and Solutions

 Dr. Gabor Szentivanyi, ULX Open Source Consulting & Distribution

Background

 Over 18 years of experience in enterprise grade open

source

 Based in Budapest, Hungary

 Distinguished partner of Red Hat for Hungarian and

regional business

 Consultancy in large scale datacenter,

 middleware and cloud design,

implementation, integration, training

 Specialized in private and hybrid

clouds based on leading Red Hat

technology

What’s in a cloud anyway

 Definition core: providing IT resources with elastic

scalability, accountability

 What are these resources?

 Low-level infrastructure services: computing, storage, network

 Platform services for developers: container, DB, middleware, ….

 Application services: standardized high-level components for complex

application building

 Public vs. Private clouds

 Cloud provision vs. Cloud management

 Infrastructure vs. Platform vs. Application clouds

 Think big: Utilization, Entropy

4

Are government clouds different?

 There is a lot to do, perceptions are diverging

 Between private and public clouds

 Standardization vs. choice

 Requirement details blurry

 Outdated regulations

 Purchase process

vs. agility

 Sizing, extension

 Chargeback

 Security

The role of Red Hat in the cloud

The cloud is open source: Linux,

Java, Docker, OpenStack,

Kubernetes, … but why?

What is the best tool in the market?

Most complete offering:

• Operating system

• Virtualization

• Infrastructure provider

• Platform and containers

• Cloud management framework

Red Hat CloudForms: What is included

 Powerful cloud management

framework with overarching

functionality

 Resource providers

(private / public):

 OpenStack, VMware, Hyper-V,

RHV, OpenShift

 Azure, Google Compute Engine,

Amazon EC2

 GUI, Chargeback, Automation, Dashboards, Metering

 Service management (catalogs, lifecycle, bundles, …)

 Smart state analysis, policy / compliance

Project scope

Hardware: 6000 VMs, 3000 core, 135 TB RAM, 1200 TB storage

Cloud scope: infrastructure services with some platform level additions

Services designed, implemented, catalogized and provided for tenants

Traditional virtualization: VM-based resources (VMware, RHV)

Innovative cloud resources: containers (OpenShift), infrastructure (OpenStack)

Application runtime environments (traditional)

Automated network: IP, VLAN, DHCP, DNS, load balancer, firewall, VPN

Database as a Service: Oracle, MS SQL, Postgres, MariaDB, MongoDB

Centralized logging, monitoring, backup, virus check, snapshotting

Centralized file services: NFS, CIFS

Reporting, Policy and compliance enforcement

Tenant provisioning and management, quota management, incident management

8

Strategic concepts and planning in general

 Plan thoroughly even if challenging, at least for 5-10 years

 Set expectations, and manage discrepancies and conflicts early

 People especially decision makers easily expect all varieties

 Decouple from hardware lifecycles

 Start with large number of

resources, think big!

 Define a delicate balance

between standardization

and freedom of choice

 Implement for today but

plan for the future

Strategic concepts and planning in particular

 Automate everything you can

 use smart policies rather than mimic manual workflows

 Design a separate test environment (really separate)

 “Infrastructure as code”

 Treat infrastructure as code: versions, revisions, bugfixing

 Use version management

 Deploy infrastructure as code

 Prepare automated testing

 Mostly at service level

 Use an agile devops approach

Areas of attention: legacy systems

 Tectonic shift between legacy and cloud

 but cloud management is not for cloud ready applications only, legacy systems

will coexist (especially in government)

 Cloud native architecture is service and application oriented,

underlying infrastructure can be easily standardized

 Legacy is heavily infrastructure dependent, no straightforward

way to fit in

 What do we do with legacy systems

 Migrate: take advantage of the cloud without disrupting operations

 Integrate: let them easily communicate with cloud applications

Areas of attention: robustness and scalability

 Heterogeneous components and their capability limitations

are a challenge

 each component needs to be validated

 Disaster recovery

 A chain is only as strong as its weakest link

 Multi tenancy

 Most legacy systems are not prepared

 Scalability

 Cloud native vs. legacy

 Replaceability

 Achieve independence from or build abstraction for

special HW / SW components

12

From the tenant’s viewpoint

 Who is a tenant?

 Onboarding (contractual, technical)

 Selection of services offered

 Service catalog: simple services,

service bundles

 Service lifecycle management (create, modify, retire)

 Tenant administration

 Centralized network services

 Reporting (resources, network, usage, utilization etc.)

Lessons learned

 Project runtime between 8-16 months, depends on prior preps

 All components selected need to scale or be made scale

 If not, be prepared to replace components

 All components selected need to be multi-tenant

 If not, add many extra months to implement

 Must be hardware independent, it’s not the decisive factor

 If not, be prepared for trouble when extending that system

 Save budget and time for excessive Change Requests

 If not, you will not meet expectations, great chance to fail

 Train users heavily

 If not, they will find the system inappropriate

Thank you for your attention!

Questions?

Dr. Gabor Szentivanyi, CEO

ULX Open Source Consulting & Distribution

gabor.szentivanyi@ulx.hu

