Recycling nutrients and carbon from waste-to-fertilizers

Pyrolysis-Biochar System

Chapter 1: Biochar as a Soil Amendment

Carbon Product

Carbon persistence
Surface area and functional groups
Electron shuttle and fused arom.

Soil Health
GHG reduction + C sequestration
Pollution reduction by leaching
and gas emissions
Soil remediation
Inoculant carriers
Signaling (plant-plant; plant-MO)

Nutrient Product

Nutrient enrichment
Nutrient availability
Sterilization
Denaturing of pollutants

Fertilization
Pollution avoidance

Fertilizers from animal residues is NOT New

Pyrolysis Fertilizers are NOT New

Pyrolysis of Slaughterhouse Wastes

P: 8% to 15% (Rock P: 8%; TSP 20%)

Pyrolysis of Slaughterhouse Wastes

No significant different plant P uptake between bone char (RB750) and TSP

Greenhouse trial Z. mays after five weeks (n=5) (-RH) without root hairs (+RH) with root hairs (+RH +AM) with root hairs and AM inoculants

Bone Char as a Fertilizer

Char P has similar effectiveness as commercial P fertilizer

(n=10)

Recycling of Dairy Manure using Pyrolysis

No contaminants (heavy metal, PAH, PCB, dioxin/furans, etc.)
No pollutants from manure (pathogens, hormones, antibiotic)

Value as ingredient of potting mix: appr. \$1,900 ton-1

83% from non-nutrient value (as potting mix)

www.pyrolysis.cals.cornell.edu

Recycling from Urban to Agriculture

Biochar as Adsorber

Biochar	Solution	Total N before urine (%w/w)	Total N after urine (%w/w)	ΔN after urine (%w/w)
	Fresh urine + HCl		4.47 ± 0.17	1.14 ± 0.19
500°C HSW	Fresh urine	3.33 ± 0.08	3.59 ± 0.05	0.26 ± 0.09
	Deionized water		3.71 ± 0.02	0.38 ± 0.08

- N retention primarily NH₄⁺ at pH <7
- Greater than predicted by CEC,
 1.14% vs. 0.31% (w/w)

Biochar Oxidation and NH₃ Retention

Up to 18% N

Biochar Climate Mitigation

Two Entry Points:

A: Soil CDR <u>and</u> emission reduction through pyrolysis: reduce CO₂/N₂O/CH₄ return of the charred OM

B: Soil CDR <u>and</u> emission reduction through soil application:

B1: reduce soil GHG emissions (CO₂/N₂O/CH₄)

B2: increase CO₂ capture by plants through photosynthesis

Biochar Systems Effects on GHG

Chapter 3: Bioenergy Production

GJ per Mg of dry, ash-free feedstock example system based on slow pyrolysis at 450° C followed by tar-cracking at 800° C

Animal Manure and Energy Generation

125-600 t/yr of poultry litter

Fuel offsets of US\$66,000/yr

\$480/t biochar at farm gate

Chapter 4: Waste Recycling Systems

New York Phosphate

Dairy Manure: 9,000 tons phosphate per year

Fertilizer sales (2009): 8121 tons phosphate per year

Table 1 | Total phosphorus in annual bone residues from slaughtered animals in Ethiopia.

	Total no. of animals⁵	Bone mass ⁶ (kg per animal)	% of animals slaughtered	Bone residues (tonnes per year)	Total phosphorus (tonnes per year)
Cattle	50,283,000	20-30	16-17	160,908-256,447	-
Sheep	23,642,000	4-5	19-34	17,968-40,192	-
Goats	22,070,000	4-5	15-30	13 242-33 106	-01
TOTAL	95,995,000	-	-		

17-36k

tons P/year

28-58% of annual P imports

Value of

US\$ 50-104 million/year

Collection

1.25 ETB/kg Average payout 3x daily wage Amount exceeded capacity

Price Comparison of Bone Char Fertilizer with Imported P Fertilizers

Bone Char P Fertilizer is less expensive!

Cost scenario	Bone char fertilizer cost	Cost imported equivalent	BC % diff. to imported equivalent	
TSP Equivalent				
low-cost	ETB 5.33	ETB 12.65	-57.89%	
high-cost	ETB 8.42	ETB 12.65	-33.48%	
intermediate	ETB 6.87	ETB 12.65	-45.69%	
DAP Equivalent				
low-cost	ETB 8.96	ETB 15.08	-40.56%	
high-cost	ETB 12.13	ETB 15.08	-19.59%	
intermediate	ETB 10.54	ETB 15.08	-30.08%	

Bone Char valued as imported DAP

	Product	Obs.	Mean Bid	Std. dev.	Median Bid	Mean Bid	Mean price paid
2	DAP	118	53.04*	31.53	50.00	153.3	122.5
Ĺ	BoneChar	118	52.02*	30.54	45.00	127.5	107.5
	BoneChar+Urea	118	53.91*	25.44	50.00	111.3	100.0

^{*}Average bid price is significantly greater than zero at p < 0.01 level

Recycling of Humanure using Pyrolysis

Take home

- 1. Recycling options exist for nutrients from wastes
- 2. Nutrient use efficiency and production costs can be as high as for commercial mineral fertilizers
- 3. Perceived value to farmers can be as high as for commercial mineral fertilizers
- 4. Very active field of basic and applied research as well as commercial development

Bedding

