

QUAPAW NATION

OF

OKLAHOMA

Tribal Transportation Safety Plan

FINAL REPORT
December 11, 2017
PREPARED BY:

Table of Contents

Introduction 2

- Background 2
Safety Partners/Stakeholders 3
Methodology 3
Data Analysis 4
Emphasis Areas 5
- Background 5
- Objective 5
- Performance Measures 5
- Strategies 5
Implementation Process 5
Evaluation Process 6
Next Steps 6
References 7
List of Appendices
Appendix A - Tribal Safety Plan Matrix
Appendix B - Crash Data (2011-2016)Appendix C - Crash Code DefinitionsAppendix D - GIS Crash MapsAppendix E - 2007 Traffic VolumesAppendix F - Proven Safety Countermeasures

Introduction

Background

The Quapaw tribal area is unique in that it is well connected with the surrounding roadway networks in Kansas, Oklahoma, and Missouri. Due to that fact, a high percentage of traffic on the major routes travels through the tribal area to arrive at their final destination. This situation presents its own unique challenges when working to improve the transportation safety in this area.

Another unique characteristic is the breakdown of roadway ownership and physical location of the Quapaw roadway system. The roadway system is comprised of 144.5 miles of county roads, 43.1 miles of urban/city streets, 24.2 miles of state highway, and 7.9 miles of tribal roads. Additionally, the breakdown of bridge ownership is similar to the roadways. There are 2773 feet of county bridges, 782 feet of state bridges, and 120 feet of tribal bridges.

The geographical location of some of these roadways presents an unusual challenge as well. Though the vast majority of the Quapaw road network is in Oklahoma, there are six (6) sections of roadway that are in the state of Kansas (totaling 0.9 miles) and one (1) section of roadway that is within the state of Missouri (0.1 mile). Working within three states poses a very unique challenge to the tribe.

In order to help better understand the transportation safety challenges, traffic crash data was evaluated from the Oklahoma Highway Safety Office (OHSO), Kansas Department of Transportation (KDOT), and the Missouri Department of Transportation (MoDOT). All three agencies provided crash data specific to the Quapaw tribal area for the years 2011 to 2016.

MoDOT's Transportation Management System (TMS) was used to identify crash data in the state of Missouri. No injury or fatal crashes were found for the one tenth mile segment of Downstream Boulevard between SE $118^{\text {th }}$ Street and the US 400 roundabout in Missouri.

KDOT was contacted to obtain crash data along the six (6) sections of roadway within the state of Kansas. One (1) injury crash and one (1) property damage only crash were found along these sections which include a short stretch of SE $118^{\text {th }}$ Street south of Downstream Boulevard, two short sections along Downstream Boulevard between the casino and SE $118^{\text {th }}$ Street, and three short sections of internal street network within the parking lot area.

OHSO was contacted to obtain crash data within the Quapaw region of Oklahoma. During this six year timeframe there were 328 total crashes within the combined study area. Of those, there were eight (8) fatal crashes with nine (9) fatalities; there were 130 injury crashes with 135 persons injured; and, there were 190 property damage only crashes. The purpose of this plan is to document known and perceived issues and to take a proactive approach towards transportation safety.

Emphasis areas, based on data analysis, were identified and then prioritized by the stakeholders. Strategies have been developed with desired outcomes for reducing fatalities and serious injuries from vehicle crashes. In order to help focus the collective efforts of the stakeholder group, a Vision, Mission, and Goal were established.

Vision: Eliminate all injury and fatal crashes within the Quapaw region.
Mission: Implementing cost-effective engineering projects, education campaigns, law enforcement efforts, and EMS strategies to quickly reduce and ultimately eliminate all injury and fatal crashes within the Quapaw region.

Goal: Reduce fatalities and injuries by 5% each year over the next five (5) years.

Safety Partners/Stakeholders

The following agencies were consulted in the development of the Tribal Transportation Safety Plan (TTSP) and are crucial to achieving the planned goals.

- CJW Transportation Consultants, LLC
- Quapaw Tribe Maintenance Director
- Quapaw Tribe Tribal Administrator
- Quapaw Tribe Chief Financial Officer
- Quapaw Tribe EMS Director
- Quapaw Tribe Marshals, Chief
- Quapaw Tribe Grants Manager
- Quapaw Tribe EM Project Manager
- Quapaw Services Authority Health and Safety Manager
- Quapaw Tribe Business Committee - Secretary/Treasurer
- Quapaw Services Authority Project Manager
- Quapaw Tribe Housing Director
- Quapaw Tribe Roads Manager

Methodology

The stakeholder group met and conducted a charrette style meeting where stakeholders offered input on transportation safety issues within the Quapaw region. Those issues were documented and then categorized into emphasis areas specific to the Quapaw transportation network. From these specific emphasis areas, detailed data analysis was conducted on the traffic crash data to further the safety issues identified by the local stakeholder group.

Crash data was acquired from OHSO. Using this data, ensuring that attention was given to the emphasis areas identified by the stakeholder group, an in-depth analysis was completed. This analysis identified key crash types, locations, and contributing factors for the 2011-2016 timeframe. Additional areas of concern were identified and then prioritized by working with the stakeholders in a group meeting. All modes of transportation were discussed.

From the data analysis and local stakeholder input, as well as review of the Oklahoma Strategic Highway Safety Plan, the emphasis areas were prioritized. The prioritization was done to ensure that the most effective countermeasures would be used to meet the Vision, Mission, and Goal of the transportation safety plan.

Performance measures were also developed for each recommended emphasis area.
Strategies used will be in line with those found in the 2013-2014, Oklahoma Strategic Highway Safety Plan (SHSP).

Data Analysis

The 2011-2016 OHSO crash data was reviewed and analyzed by severity, crash type, contributing circumstance, and time of day/day of week. National Highway Traffic Safety Administration's (NHTSA) Fatality Analysis Reporting System (FARS) data from 2011-2015 was also reviewed and analyzed to determine if there were additional elements that needed to be considered in this plan.

During the timeframe from 2011-2016, there were nine (9) traffic fatalities in the Quapaw region occurring in eight (8) fatal crashes. There was one (1) fatality in 2011; two (2) fatalities in 2012; three (3) fatalities in 2013; none in 2014; two (2) in 2015; and, one (1) in 2016. Five (5) of the fatal crashes listed alcohol as a contributing factor. Two (2) of the fatal crashes listed both alcohol and drugs as contributing factors.

Native American Traffic Safety Facts (2017), stemming from FARS data (2011-2015), lists one (1) Native American as being killed as a result of a car crash. In 2012, a Native American pedestrian was struck and killed by a motor vehicle. The data shows that the pedestrian was in the roadway when struck by the vehicle.

The stakeholders were provided the data (both tabular and graphic) to review. Additional areas of concern, beyond what the crash data revealed, were identified and discussed. A thorough review of the regional crash data, input from the stakeholders, and the 2013-2014 Oklahoma SHSP was used in this process. From this process, the following thirteen (13) issues were identified.

- Roadway Safety (narrow roads, sight distance, flooding, pavement condition - Engineering \& Emergency Response)
- Accessibility (bridge/roadway flooding causing some areas to be cut off, roadway width in areas is problematic - Engineering \& Emergency Response)
- Distracted Driving (mostly cell phones, but any type of distraction - Education)
- Drainage Issues (water on roadways, ditches and stream flooding, hydroplaning and issues at intersections - Engineering)
- Roadway Delineation (pavement marking \& signing is in poor condition or missing - Engineering)
- Intersection Improvements (sight distance, geometrics, visibility, etc. - Engineering)
- Parking Areas (obstructing view at driveways and intersections - Engineering)
- Speeding (work zones, actual speed limits, might do Safety Zones - Engineering \& Enforcement)
- Work Areas (speeding, sight distance, driver issues (specifically the chat pile mitigation area) Engineering \& Enforcement)
- Intersection Lighting (very dark, easy to miss - Enforcement)
- School Zone Issue (loading/unloading can cause congestion, pedestrians crossing main roadway Engineering, Education, \& Enforcement)
- Impaired Driving (high percentage of impaired fatalities in region - Enforcement \& Education)
- Seatbelt Usage (low usage - Education)

Engineering, education, enforcement, \& emergency medical services are commonly referred to as the " 4 E 's". Strategies from all of the 4 E 's identified in the SHSP have been utilized to address issues within the identified emphasis areas. From the identified issues and their related emphasis area, four (4) key emphasis areas were chosen. These emphasis areas will allow the tribe to focus and maximize the effectiveness of their efforts.

Emphasis Areas

The four (4) key emphasis areas identified are: Unsafe Driver Behavior; Intersection Crashes; Crashes Involving Young Drivers; and Lane Departure Crashes. These emphasis areas were selected based on a thorough analysis of the regional crash data, input from the stakeholders, and by reviewing the 20132014 Oklahoma SHSP.

To ensure that this plan is specific to the Quapaw region, the objectives and success indicators have been tailored specifically to the Quapaw region's identified areas of concern (see Appendix A).

Background

The stakeholders applied local knowledge and reviewed the safety data provided by the Oklahoma Highway Safety Office. The safety of all inhabitants, visitors, and passersby in the Quapaw region is vitally important and must be considered. Therefore, a comprehensive approach to this plan was taken.

Objective

The overall objective of this plan is to reduce all fatal and serious injury crashes by 5% each year for 5 years. This will be best accomplished through successful planning and implementation in all four emphasis areas.

Performance Measures

Going forward, crash data acquired from the Oklahoma Highway Safety Office will be used to determine if the actions identified for each emphasis area has been successful. Additionally, media efforts and the number of students that have been reached through specific highway safety educational programs will be tracked to ensure that outreach is being accomplished in the Quapaw region.

Strategies

Individual strategies are listed in the Tribal Safety Plan Matrix for each emphasis area to ensure accountability for all organizations and/or positions listed in the Tribal Safety Plan Matrix. The stakeholders group will meet semi-annually to discuss and review the efforts taken in each emphasis area.

Implementation Process

The stakeholders will establish milestones to measure the progress of the Transportation Safety Plan and keep a record of successes and challenges. This data will be essential in evaluating the actions/strategies
to determine their effectiveness. The working group will monitor the implementation of these strategies to ensure their success. Furthermore, monitoring will provide accountability, keep stakeholders engaged, and allow for collaboration opportunities to be identified.

The stakeholders will meet with the responsible person/organization for each action/strategy to ensure that they are on track with the agreed upon milestones. This meeting should include updated data (when available) as prescribed in the plan. The timeframe for holding these meetings will depend on the type of strategy and the timeframe needed to update the data as outlined in the Transportation Safety Plan.

Evaluation Process

Educational and Enforcement strategies can be measured almost immediately. Crash numbers can be reviewed annually. However, to ensure that the strategies have worked with any statistical certainty, follow-up studies will need to take place three to five years after improvements have been made.

A simple Benefit-Cost analysis can be performed to demonstrate the success and cost effectiveness of the Tribal Transportation Safety Plan.

Next Steps

With the results of the ongoing evaluation of this Tribal Transportation Safety Plan, the stakeholders will make changes or modifications to the plan as necessary. The stakeholders will keep the Plan up-to-date based on the results of its evaluation or any changes in the transportation network within the region. Regularly scheduled updates of the Plan will allow the stakeholders to review what is working well, what needs improvement, and any additional emphasis areas and/or strategies to implement. The stakeholders will establish regularly scheduled evaluations and a regular scheduled update cycle to ensure routine examination of the plan and to ensure the plan's effectiveness.

References

Oklahoma Highway Safety Office, 2013-2014 Strategic Highway Safety Plan: http://www.okladot.state.ok.us/oshsp/index.htm

FHWA, Safe Roads for a Safer Future - A Joint Safety Strategic Plan https://safety.fhwa.dot.gov/ssp/ssp.pdf

FHWA, Proven Safety Countermeasures https://safety.fhwa.dot.gov/provencountermeasures/

FHWA, Developing Safety Plans: A Manual for Local Rural Road Owners: https://safety.fhwa.dot.gov/local rural/training/fhwasa12017/

FHWA, Information Tools for Tribal Governments: Developing a Transportation Safety Plan: https://www.fhwa.dot.gov/planning/processes/tribal/planning modules/safety/tribalsafetyplan.pdf

FHWA, Tribal Road Safety Audits: Case Studies: https://safety.fhwa.dot.gov/rsa/tribal rsa studies/

NHTSA, Fatality Analysis Reporting System (FARS)
http://www.nhtsa.gov/FARS

Tribal Transportation Safety Management System Steering Committee, Tribal Transportation Strategic Safety Plan: http://tribalsafety.org/

Quapaw Tribe Roads Department, Transportation Plan for the Quapaw Indian Tribe of Oklahoma
Indian Reservation Roads Program, Inventory Data Sheet (ver 2), FY 2018 Inventory, 20 Oct 17

QUAPAW NATION OF
OKLAHOMA

Tribal Transportation Safety Plan APPENDIX A - TRIBAL SAFETY PLAN MATRIX

PREPARED BY:

Tribal Safety Plan Matrix						
EMPHASIS AREA			STRATEGIC LINKAGE			
1 - Unsafe Driver Behavior			Unsafe Driver Behavior was identified in the state-wide Strategic Highway Safety Plan as the first of the four (4) Emphasis Areas for the 2013-2014 Oklahoma SHSP.			
OBJECTIVES			SUCCESS INDICATORS			
Reduce the frequency and severity of driver related crashes within the region.			An increase in awareness, leading to better driver decisions will reduce driver behavior related crashes, which tend to be severe crashes, in the Quapaw Tribal Region. Overall Goal: 20% Reduction Serious Injuries \& 30\% Reduction Fatalities			
	Actions	Target Outputs	Organizations and Persons Responsible	Date of Completion	Performance Measures	Monitoring and Education
$\begin{aligned} & \text { 든 } \\ & \text { 苞 } \\ & \text { O} \end{aligned}$	Public service announcements regarding the dangers of speeding, driving distracted, driving impaired and/or being unbelted in a moving vehicle	Increased awareness of the dangers involved in driving while impaired, speeding, distracted, and/or unbelted	Quapaw Services Authority / Project Manager	Dec. 2018 (review/upd ate messages annually)	Number of PSAs, Discussions at Public Meetings, and School Presentations	Informal survey of public response planned each fall at a public meeting
	Meet with Oklahoma Highway Patrol and Ottawa County Sheriff to request Increased enforcement efforts specifically looking for speeding, impaired driving, distracted driving, and/or unbelted occupants	More warnings and citations issued specifically relating to unsafe driver behavior reducing speeding and impaired driving, and increasing seatbelt usage.	Quapaw Services Authority / Project Manager	Dec. 2018 (reviewed annually)	Number of reported crashes listing speeding, impaired driving, distracted driving, and/or unbelted occupants.	Annual crash data obtained from Oklahoma Highway Safety Office
mergency Medical Services	Look for opportunities to develop a new ambulance facility and purchase additional ambulances or acquire better access to the interstate	Improve response time to incidents (especially on the interstate), thus increasing the likelihood of survival in severe crashes	Quapaw Services Authority / Project Manager	Dec. 2022	Reduction of response time to severe crashes	Annual report by EMS providing notification time, arrival time, and response to scene times for each incident

APPENDIX A
 (cont.)

Quapaw Nation of Oklahoma
Tribal Transportation Safety Plan

EMPHASIS AREA			STRATEGIC LINKAGE			
2 - Intersection Crashes			Intersection Crashes was identified in the state-wide Strategic Highway Safety Plan as the second of the four (4) Emphasis Areas for the 2013-2014, Oklahoma SHSP.			
OBJECTIVES			SUCCESS INDICATORS			
Reduce the frequency and severity of intersection related crashes within the region.			A decrease in intersection related crashes, which tend to be severe crashes, in the Quapaw Tribal Region. Overall Goal: 20\% Reduction Serious Injuries \& 30\% Reduction Fatalities			
	Actions	Target Outputs	Organizations and Persons Responsible	Date of Completion	Performance Measures	Monitoring and Education
	Intersection improvements, including but not limited to, geometric improvements, increased and/or improved signing, improved pavement marking, and lighting	Reduction in serious injury and fatal crashes that are intersection related	Quapaw Services Authority / Project Manager	Dec. 2022	Number of serious injuries and fatalities due to intersection related crashes	Annual crash data obtained from Oklahoma Highway Safety Office
	Meet with Oklahoma Highway Patrol and Ottawa County Sheriff to request increased enforcement for intersection related violations	More warnings and citations issued specifically relating to intersections	Quapaw Services Authority / Project Manager	Dec. 2018 (reviewed annually)	Number of serious injuries and fatalities due to intersection related crashes	Annual crash data obtained from Oklahoma Highway Safety Office
	Look for opportunities to develop a new ambulance facility and purchase additional ambulances or acquire better access to the interstate	Improve response time to incidents (especially on the interstate), thus increasing the likelihood of survival in severe crashes	Quapaw Services Authority / Project Manager	Dec. 2022	Reduction of response time to severe crashes	Annual report by EMS providing notification time, arrival time, and response to scene times for each incident

APPENDIX A
 (cont.)

Quapaw Nation of Oklahoma
Tribal Transportation Safety Plan

EMPHASIS AREA			STRATEGIC LINKAGE			
3 - Crashes Involving Young Drivers			Crashes Involving Young Drivers was identified in the state-wide Strategic Highway Safety Plan as the third of the four (4) Emphasis Areas for the 2013-2014, Oklahoma SHSP.			
OBJECTIVES			SUCCESS INDICATORS			
Reduce the frequency and severity of crashes involving young drivers within the region.			A decrease in serious injuries and fatalities involving young driver crashes in the Quapaw Tribal Region. Overall Goal: 20\% Reduction Serious Injuries \& 30\% Reduction Fatalities			
	Actions	Target Outputs	Organizations and Persons Responsible	Date of Completion	Performance Measures	Monitoring and Education
	Participation in the Alive at 25 program, increase driver's education, \& establish a Safety City program	Reduction in serious injury and fatal crashes involving your drivers	Quapaw Services Authority / Project Manager	Dec. 2018 (reviewed annually)	Number of serious injuries and fatalities involving young drivers	Annual crash data obtained from Oklahoma Highway Safety Office
	Meet with Oklahoma Highway Patrol and Ottawa County Sheriff to request increased enforcement of Graduated Driver License (GDL) requirements	More warnings and citations issued specifically to young drivers violating graduated license rules	Quapaw Services Authority / Project Manager	Dec. 2018 (reviewed annually)	Number of serious injuries and fatalities involving young drivers	Annual crash data obtained from Oklahoma Highway Safety Office
	Look for opportunities to develop a new ambulance facility and purchase additional ambulances or acquire better access to the interstate	Improve response time to incidents (especially on the interstate), thus increasing the likelihood of survival in severe crashes	Quapaw Services Authority / Project Manager	Dec. 2022	Reduction of response time to severe crashes	Annual report by EMS providing notification time, arrival time, and response to scene times for each incident

APPENDIX A
 (cont.)

Quapaw Nation of Oklahoma
Tribal Transportation Safety Plan

EMPHASIS AREA			STRATEGIC LINKAGE			
4 - Lane Departure Crashes			Lane Departure Crashes was identified in the state-wide Strategic Highway Safety Plan as the fourth of the four (4) Emphasis Areas for the 2013-2014, Oklahoma SHSP.			
OBJECTIVES			SUCCESS INDICATORS			
Reduce the frequency and severity of lane departure crashes within the region.			A decrease in serious injuries and fatalities involving Lane Departure Crashes in the Quapaw Tribal Region. Overall Goal: 20\% Reduction Serious Injuries \& 30\% Reduction Fatalities			
	Actions	Target Outputs	Organizations and Persons Responsible	Date of Completion	Performance Measures	Monitoring and Education
	Work with Oklahoma DOT and Ottawa County to add centerline and edge line rumble strips, improve/enhance pavement markings, improve curve signing, remove obstacles within the clear zone	Reduction in serious injury and fatal crashes involving lane departures	Quapaw Services Authority / Project Manager	Dec. 2020	Number of serious injuries and fatalities involving lane departures	Annual crash data obtained from Oklahoma Highway Safety Office
	Increased enforcement for all traffic violations	More warnings and citations issued	Quapaw Services Authority / Project Manager	Dec. 2022	Number of serious injuries and fatalities involving young drivers	Annual crash data obtained from Oklahoma Highway Safety Office
	Look for opportunities to develop a new ambulance facility and purchase additional ambulances or acquire better access to the interstate	Improve response time to incidents (especially on the interstate), thus increasing the likelihood of survival in severe crashes	Quapaw Services Authority / Project Manager	Dec. 2022	Reduction of response time to severe crashes	Annual report by EMS providing notification time, arrival time, and response to scene times for each incident

QUAPAW NATION OF
OKLAHOMA

Tribal Transportation Safety Plan APPENDIX B - CRASH DATA (2011-2016)

December 11, 2017 PREPARED BY:

Quapaw Region

 \qquad

 commerce poct bep
COMMERC PuICE Dep

OKLAHOMA HIGHWAY Patr
COMMERCC POUCE DEPT
Commerc folct ber
COMMECC POUCE De

OkoA
OkRA
OKLAA
O．
\qquad OKLAHOMA HIGHAY PAA

counr
convr
counv
coun
coun
colnvr
 Countr Rad（sool）

57	5	1	$\frac{1}{2}$	：	0	
34	4	5	2	0	1	
	3	1	5	0	0	0
34 99 9	${ }_{7}$	5 1	3	$\stackrel{0}{1}$	\bigcirc	：
	2	1	1	－	1	
	2	1	1	\bigcirc	1	0
${ }^{34}$	5	1	3	－	0	0
	2	3	2	0	0	0
34 34 34	5 3 3	1	${ }_{1}$	：	\bigcirc	：
（ 34	${ }_{3}^{3}$	1	$\frac{1}{3}$	：	\bigcirc	：
${ }_{34}$	6	1	3	0	0	
10	1	1	1	－	0	\％
	2	1	，	0	0	\bigcirc
	4	2	5	0	0	
34 15 15	3	1	2	\％	0	0
15 57		${ }_{3}^{1}$	$\frac{1}{2}$			
${ }_{34}$	${ }_{4}$	1	${ }_{3}$	－	\bigcirc	$\stackrel{1}{0}$
	5	1	1	0	－	
	2	1	1	0	0	
	3 6	$\stackrel{2}{1}$	2	\bigcirc	0	\bigcirc
	${ }_{6}^{6}$	1	2			
${ }_{34}^{10}$	${ }_{6}$	3	2	！	0	！
46	2		1	－	1	\％
51	6	2	1	0	0	0
		3 4	1	\bigcirc	0	0
34	1	4	5	0	1	：
57	4	3	1	。	\bigcirc	
	7	2	3	。	。	－
	2	1	1	0	0	
49	3 3	1	1	\bigcirc	0	0
			2			
57	${ }_{7}^{4}$	1	2	\bigcirc	\bigcirc	！
${ }^{31}$	6	${ }^{3}$	1	1	0	0
	5	1	1	0	0	
${ }^{99}$	7	2	1	\bigcirc	\bigcirc	0
32	3	2	1	3	0	
${ }^{59}$	1	3	2	0	0	
	2	1	5	0	0	
39	5 6	1	5	！	\bigcirc	！
	${ }_{6}$	1	${ }^{5}$	O	0	
${ }_{39} 9$	${ }_{7}^{6}$	1	$\stackrel{3}{2}$	：	\bigcirc	\bigcirc
59	3	2	3	0	0	
	6	1	4	－	1	
	3 4 4	1	4	0	0	
（38	${ }_{4}^{4}$	1	1	0	1	
34 57	${ }_{4}^{6}$	${ }_{1}^{2}$	2	O	1	0
99	${ }^{3}$	2	2	0	。	0
	3				0	
99	5	1	2	0	0	0
${ }_{39} 9$	4	1	2	O	\bigcirc	
	4	2	1	。	0	
	1	1	2	0	0	
	2	3	2	0	1	
10 51 1	${ }_{4}^{2}$	1	2	－	0	
4	1	3	，	0		
${ }^{4}$	5	2	2	0	0	
57	3					
5	3	1	2	0	。	
	1	4	2	0	0	
8				0	0	
	6	1	2	0	0	
44	5	1	4	0	0	0
59	1	1	1	0	0	0
	6	1		\bigcirc	0	
	${ }_{6}$	4				
	1	$\frac{4}{2}$	4	0	1	

 \qquad

 \square

B-4

MOTOR VEHICLE CRASH SUMMARY

Downstream Casino Resort Area

Cherokee County, KS

	CRASHES				PEOPLE	
Year	Total	Fatal	Injury	PDO	Deaths	Injuries
2011	0	0	0	0	0	0
2012	0	0	0	0	0	0
2013	0	0	0	0	0	0
2014	0	0	0	0	0	0
2015	0	0	0	0	0	0
2016	2	0	1	1	0	2
Total	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$

*PDO - Property Damage Only
NOTE: Kansas crash data provided by Kansas DOT.

MOTOR VEHICLE CRASH SUMMARY

Downstream Casino Resort Area Newton County, MO

	CRASHES				PEOPLE	
Year	Total	Fatal	Injury	PDO	Deaths	Injuries
2011	0	0	0	0	0	0
2012	0	0	0	0	0	0
2013	0	0	0	0	0	0
2014	0	0	0	0	0	0
2015	0	0	0	0	0	0
2016	0	0	0	0	0	0
Total	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

*PDO - Property Damage Only
NOTE: Missouri crash data identified through MoDOT's Transportation Management System (TMS) accident summary application.

QUAPAW NATION OF
OKLAHOMA

Tribal Transportation Safety Plan APPENDIX C - CRASH CODE DEFINITIONS

Oklahoma Crash Codes

Variable	Description	Value	Label
CASE	Unique case number for crash		
ENV_FATAL	Fatality Code	0	Not Stated
		9	Unknown
		N	No
		Y	Yes
ENV_HIT	Hit \& Run Code	0	Not Stated
		9	Unknown
		N	No
		Y	Yes
ENV_VEH	Total Number of Vehicles		
ENV_INJ	Total Number Injured		
ENV_KILL	Total Number Killed		
ENV_DATE	Crash Date		
ENV_TIME	Crash Time		
ENV_COUNTYNAME	County		
ENV_IN_NEAR_CITY	Crash In or Near City	1	In City
		N	Near City
env_city	City		
ENV_STREET_HWY	Highway/Street Name		
ENV_INTERSECT_ROAD	Nearest Intersecting Highway/Street		
ENV_WORKZONE	Workzone	N	No
		Y	Yes
ENV_WORKZONE_TYPE	Workzone Type	1	Lane Closure
		2	Lane Shift/Crossover
		3	Work on Shoulder/Median
		4	Intermitten or Moving Work
		9	Unknown
		20	Not Stated
ENV_WORKZONE_LOCATION	Location of Collision wtihin the Workzone	1	Before the First Work
		2	Advance Warning Area
		3	Transition Area
		4	Activity Area
		5	Termination Area
		9	Unknown
		20	Not Stated
ENV_WORKZONE_WORKER	Worker Present in Workzone	0	Not Stated
		9	Unknown
		N	No
		Y	Yes
ENV_LIGHT	Lighting	1	Daylight
		2	Dark-Not Lighted
		3	Dark-Lighted
		4	Dawn
		5	Dusk
		6	Dark-Unknown Lighting
		7	Other
		9	Unknown
		20	Not Stated

(cont.)
Oklahoma Crash Codes

ENV_WEATHER	Weather	1	Clear
		2	Fog/Smog/Smoke
		3	Cloudy
		4	Rain
		5	Snow
		6	Sleet/Hail (Freezing Rain/Drizzle)
		7	Severe Crosswind
		8	Blowing Snow
		9	Blowing Sand, Soil, Dirt
		10	Other
		98	Not Stated
		99	Unknown
ENV_LOCALITY	Locality	1	Residential
		2	Business
		3	Industrial
		4	School
		5	Not Built-up
		6	Mixed Use
		7	Other
		9	Unknown
		20	Not Stated
ENV_HARM_EVENT_LOCATION	Location of First Harmful Event	1	On Roadway
		2	Shoulder
		3	Median
		4	Roadside
		5	Gore
		6	Separator
		7	Parking Lane/Zone
		8	Off Roadway, Location Unknown
		9	Outside Right-of-Way
		10	Other
		98	Not Stated
ENV_FIRST_HARM_EVENT	First Harmful Event for Entire Crash	0	Not Applicable
		10	Overturn/Rollover
		11	Fire/Explosion
		12	Immersion
		13	Jackknife
		14	Cargo/Equipment Loss/Shift
		15	Equipment Failure
		16	Separation of Units
		17	Departed Road Right
		18	Departed Road Left
		19	Cross Median/Centerline
		20	Downhill Runaway
		21	Fell/Jumped from Motor Vehicle
		22	Thrown or Falling Object
		23	Other Non-Collision
		30	Pedestrian
		31	Pedal Cycle
		32	Railway Vehicle
		33	Animal

(cont.)
Tribal Transportation Safety Plan
Oklahoma Crash Codes

ENV_FIRST_HARM_EVENT	First Harmful Event for Entire Crash	34	Motor Vehicle in Transport
		35	Parked Motor Vehicle
		36	Struck by Falling/Shifting Cargo
		37	Work Zone/Maintenance Equipment
		38	Other Non-Fixed Object
		40	Barrier (Cable)
		41	Barrier (Concrete)
		42	Barrier (Other)
		43	Fence Pole
		44	Fence
		45	Traffic Signal Support
		46	Traffic Sign Support
		47	Utility Pole/Light Support
		48	Other Post/Pole/Support
		49	Guardrain/Guardrail Fence
		50	Guardrain End
		51	Culvert
		52	Curb
		53	Island
		54	Sand Barrels
		55	Impact Attenuator
		56	Pavement Drop-Off
		57	Ditch
		58	Embankment
		59	Tree (Standing)
		60	Dividing Strip
		61	Retaining Wall
		62	Bridge Abutment
		63	Bridge Pier/Support
		64	Bridge Rail
		65	Bridge Post
		66	Bridge Curb
		67	Bridge Super Structure (Beams)
		68	Bridge Overhead Structure
		69	Delineator
		70	Mailbox
		71	Other Fixed Object
		72	Other Highway Structure
		73	Ground
		98	Not Stated
		99	Unknown
ENV_DAY	Day of Week	1	Sunday
		2	Monday
		3	Tuesday
		4	Wednesday
		5	Thursday
		6	Friday
		7	Saturday

(cont.)
Tribal Transportation Safety Plan
Oklahoma Crash Codes

ENV_KABCO	Crash Injury Severity	0	Not Applicable
		1	None
		2	Possible
		3	Non-Incapacitating
		4	Incapacitating
		5	Fatal
		9	Unknown
ENV_TOT_OCCUPANTS	Total Motor Vehicle Occupants in Crash		
ENV_TOT_NONMOTORISTS	Total Non-Motorists in Crash		
ENV_TOT_COMM_VEH	Total Commerical Vehicles in Crash		
env_alcohol_related	Alcohol Related	0	No
		1	Yes
env_drug_related	Drug Related	0	No
		1	Yes
odot_hc	ODOT Highway Class	1	Rural US Highway
		2	Interstate Highway
		3	Interstate Turnpike
		4	Rural State Highway
		5	County Road
		6	City Street
		7	Urban US Highway
		8	Urban State Highway
		9	Non-Interstate Turnpike
		10	Unknown
LATITUDE	Latitude		
LONGITUDE	Longitude		

QUAPAW NATION OF
OKLAHOMA

Tribal Transportation Safety Plan APPENDIX D - GIS CRASH MAPS

December 11, 2017
PREPARED BY:

QUAPAW NATION OF
OKLAHOMA

Tribal Transportation Safety Plan APPENDIX E-2007 TRAFFIC VOLUMES

April 2007
Quapaw Tribe of Oklahoma Traffic Counts

Site \#	Route Number	Location	Month Counted	$\begin{aligned} & \text { Day of } \\ & \text { Week } \end{aligned}$	Volume Counted	Conversion Factors Day*	Current ADT**	Projected ADT**	\% Heavy Trucks^
1	IRR Route 0139	S630 Rd. South of E60 Rd.	April	Friday	1387	0.859	1191	1769	8.80\%
	Section 070								
2	IRR Route 0103	E57 Rd. West of S638 Rd.	April	Friday	1071	0.859	920	1366	22.30\%
	Section 050								
3	IRR Route 0139	S630 Rd. South of E60 Rd.	April	Friday	152	0.859	131	194	4.60\%
	Section 030								
4	IRR Route 0196	S630 Rd. North of E40 Rd.	April	Friday	286	0.859	246	365	5.50\%
	Section 030								
5	IRR Route 0183	E40 Rd. West of S630 Rd.	April	Friday	311	0.859	287	397	8.30\%
	Section 010								
6	IRR Route 0190	S580 Rd. North of E66 Rd.	April	Friday	6743	0.859	5792	8601	9.40\%
	Section 010								
7	URR Route 0187	E60 Rd. West of 5580 Rd .	April	Friday	1852	0.858	1691	2362	6.20\%
	Section 030								
8	RR R Route 0190	South 580 Rd. South of U.S. 69	April	Friday	5094	0.859	4376	6498	12.10\%
	Section 030								
9	RR Route 0185	E50 Rd. West of County Road 137	April	Friday	1641	0,858	1410	2093	10.30\%
	Section 010								
10	IRR Route 0000	Courty Road 137 South of U.S. 69A	April	Friday	2010	0.859	1727	2564	13.40\%
	Section 000								
11	\|RR Route 0169	P Street South of E60 Rd.	April	Saturday	300	1.035	300	446	2.30\%
	Section 010								
12	IRR Route 0129	E60 Rd. West of South Main St.	April	Saturday	842	1.035	871	1294	3.60\%
	Section 030								
13	IRR Rcute 0130	E50 Rd. West of U.S. Hwy. 69	April	Saturday	415	1.035	430	638	11.60\%
	Section 030								
14	IRR Reute 0000	S560 Rd. North of E50 Rd.	April	Saturday	1322	1.035	1368	2032	3.90\%
	Section 000								
15	\|RR Route 0182	E40 Rd. West of U.S. Hwy. 69	April	Saturday	95	1.035	98	146	5.30\%
	Section 040								
16	IRR Route 0182	E40 Rd. East of U.S. Hay. 69	April	Saturday	367	1.035	380	564	4.90\%
	Section 050								
17	IRR Route 0193	S600 Rd. North of E40 Rd,	April	Saturday	62	1.005	64	95	20.90\%
	Section 010								
18	IRR Route 0182	E40 Rd, West of S600 Rd.	April	Manday	825	0.972	802	1191	7.40\%
	Section 050								
19	IRR Route 0103	S670 Rd. North of E69 Rd.	April	Tuesday	478	0.975	486	692	2.30\%
	Section 070								
20	IRR Route 0104	E60 Rd. West of S670 Rd.	April	Tuesday	366	0.975	357	530	11.40\%
	Section 005								

April 2007
Quapaw Tribe of Oklahoma Traffic Counts

| Site t | Route Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ABBREVIATIONS KEY
*Conversion Factors: ODOT adjustmert factors used to mifigate the impact of seasonal, daily, or other generally predictable fluctuations in s
*"Current ADT: Current Average Daily Traffic (Volume Counted with applied Conversion Factors)
**Projected ADT: Current ADT Projected twenty years.
*Heavy Vehicles, l.e., trucks (vehides having more than 4 wheels) and buses.
Minformation from the Data Base of ODOT.

Quapaw Tribe of Oklahoma
Traffic Counts from Oklahoma Department of Transportation

Site ${ }^{\text {\% }}$	Route Number	Location	Year Counted	Volume Counted	Conversion Factors Day*	$\begin{array}{\|l} \text { Current } \\ \text { ADT** } \end{array}$	Projected ADT"	\% Heavy Trueks*
$5^{4 / 4}$	IRR Routo 0108	7 miNE of N/S 455	2006	---	Included	8500	14109	
	Section 010							
$6^{\text {M }}$	IRR Roule 0108	3 ml East or 69 Aa US 69 jct	2006	--..	included	9400	59	
	Section O50							
$10^{\text {mes }}$	BLA Roune 0149	Taken from Miaml OK to the	2007	---	Included	20970	31051	59.3
	Appled io Entire Rt.	staleline of Oklahoma and Missouri						

ABBREVIATIONS KEY

Corversion Factors: ODOT adjustment factors used to mitigate the impact of seasonal, daily, or other generally predictable fluct
"Current ADT: Current Average Daly Traffo (Volume Countod with appled Conversion Factors)
*-Projected ADT: Current ADT Prcjected twenty years.
*Heavy Vehicies, Le., trucks (vehicies having more than 4 wheels) and buses.
Ninformation from the Data Base of OOOT.
NAA Information from the Data base of Oklahoma Tumplke Authority

QUAPAW NATION OF
OKLAHOMA

Tribal Transportation Safety Plan

APPENDIX F - PROVEN SAFETY COUNTERMEASURES

US. Department of Tiramporfation Federal Highway Administration

Source Richard Netting
"USLIMITS2 acts as an external, impartial, second set of eyes." Source michardmetring

USLIMITS2

> USLIMITS2 helps practitioners assess and establish safe, reasonable, and consistent speed limits Georgia Dot Traffic Engineer

USLIMITS 2^{1} is a free, web-based tool designed to help practitioners assess and establish safe, reasonable, and consistent speed limits for specific segments of roadway. It is applicable
 to all types of facilities, from rural and local roads and residential streets to urban freeways.
USLIMITS2 supports customary engineering studies ${ }^{2}$ used to determine appropriate speed limits. These studies typically include evaluating criteria such as 85 th percentile speed, traffic volumes, roadway type, roadway setting, number of access points, crash history, pedestrian/bicyclist activity, etc. Similarly, USLIMITS2 produces an unbiased and objective suggested speed limit value based on 50 th and 85 th percentile speeds, traffic volume, roadway characteristics, and crash data.
Traffic engineers often communicate with the public, community leaders, and government officials to explain the methodology behind setting speed limits. USLIMITS2 provides an objective second opinion and helps support these speed limit decisions. USLIMITS2 augments the credibility of engineering speed studies, helping to address concerns from local government officials and private citizens when speed limits are adjusted.

To begin using USLIMITS2, users create a new project or upload an existing project file for revisions or updates through the online tool. The website contains the user guide, information on the tool's decision logic and related research, and frequently asked questions.

[^0]> \rightarrow For more information on this and other FHWA Proven Safety Countermeasures, please visit https://safety/fhwa.dot.gov/provencountermeasures.
us. Departmearn af Tiraypartation Federal Highway Administration

PROVEN SAFETY
 COUNTERMEASURES

This proven safety countermeasure for reducing crashes at curves includes a variety of potential strategies that can be implemented in combination or individually. These strategies fall into two categories: enhanced delineation and increased pavement friction.

Enhanced Delineation

Enhanced delineation treatments can alert drivers in advance of the curve and vary by the severity of the curvature and operating speed. Price ranges for these strategies are low to moderate. Treatments include the following:

- Pavement markings.
- Post-mounted delineation.
- Larger signs and signs with enhanced retroreflectivity.
- Dynamic advance curve warning signs and sequential curve signs.

Seuma: Trimiaroci

Increased Pavement Friction

High friction surface treatment (HFST) is another highly cost-effective countermeasure. HFST compensates for the high friction demand at curves where the available pavement friction is not adequate to support operating speeds due to one or more of the following situations:

- Sharp curves.
- Inadequate cross-slope design.
- Wet conditions.
- Polished roadway surfaces.
- Driving speeds in excess of the curve advisory speed.
\qquad

HIGH FRICTION SURFACE TREATMENTS 52\%
Reduction in wet road crashes 24\%
Reduction in curve crashes

To implement these proven safety countermeasures, agencies can take the following steps:

1. Develop a process for identifying and treating problem curves.
2. Use the appropriate application for the identified problem(\$), consider the full range of enhanced delineation and friction treatments.
3. Improve consistency in application of horizontal curve guidance provided in the Manual on Uniform Traffic Control Devices for new and existing devices.
4. Review signing practices and policies to ensure they comply with the intent of the new guidance.

Souce CMF Cherrithouse, CMID Di 7900 and 2901

Sale Reads for a Sater future

http:/ficolety Itrwadot.gov
us Depaitment of Tirasparation Federal Highway Administration

Roadside design improvement at curves is a strategy encompassing several treatments that target the high-risk roadside environment along the outside of horizontal curves. These treatments prevent roadway departure fatalities by giving vehicles the opportunity to recover safely and by reducing crash severity.
Roadside design improvements can be implemented alone or in combination and are particularly recommended at horizontal curves-where data indicates a higher-risk for roadway departure fatalities-and where cost effectiveness can be maximized.

Roadside Design Improvements to Provide for a Safe Recovery

In cases where a vehicle leaves the roadway, strategic roadside design elements, including clear zone addition or widening, slope flattening, and shoulder addition or widening, can provide drivers with an opportunity to regain control and re-enter the roadway.

- A clear zone is an unobstructed, traversable area beyond the edge of the through traveled way for the recovery of errant vehicles. Clear zones are free of rigid fixed objects such as trees and utility cabinets or poles. AASHTO's Roadside Design Guide details the clear zone width adjustment factors to be applied at horizontal curves.
- Slope flattening reduces the steepness of the sideslope to increase drivers' ability to keep the vehicle stable, regain control of the vehicle, and avoid obstacles.
- Adding or widening shoulders gives drivers more recovery area to regain control in the event of a roadway departure.

Roadside Design Improvements to Reduce Crash Severity
Since not all roadside hazards can be removed at curves, installing roadside barriers to shield unmovable objects or embankments may be an appropriate treatment. Roadside barriers come in three forms:

- Cable barrier is a flexible barrier made from wire rope supported between frangible posts.
- Guardrail is a semi-rigid barrier, usually either a steel box beam or W-beam. These deflect less than flexible barriers, so they can be located closer to objects where space is limited.
- Concrete barrier is a rigid barrier that does not deflect. These are typically reserved for use on divided roadways.

Source:Alasks DOT

Source: Fatality Analysis Reporting Systam [FARS]
\rightarrow For more information on this and other FHWA Proven Safety Countermeasures, please visit https://safety.fhwa.dot.gov/provencountermeasures.

Sole Roads for a Safer future

hitpr/solety ftrow dot oor

> Local Road Safety Plans

Local roads experience
$3 x$ the fatality rate of the Interstate Highway System.

> Source FARS and FHWA Highting Statistics Series (20147

Satety improvements an local roads can be determined through the LR5P process.
Source Dedaesrevaligy metionai Plarcing Comvission

A local road safety plan (LRSP) provides a framework for identifying, analyzing, and prioritizing roadway safety improvements on local roads. The LRSP development process and content are tailored to local issues and needs. The process results in a prioritized list of issues, risks, actions, and improvements that can be used to reduce fatalities and serious injuries on the local road network.

While local roads are less traveled
 than State highways, they have a much higher rate of fatal and serious injury crashes. Developing an LRSP is an effective strategy to improve local road safety for all road users and support the goals of a State's overall strategic highway safety plan.

Although the development process and resulting plan can vary depending on the local agency's needs, available resources, and targeted crash types, aspects common to LRSPs include:

- Stakehoider engagement representing the 4E's - engineering, enforcement, education, and emergency medical services, as appropriate.
- Collaboration among municipal, county, Tribal, State and/or Federal entities to leverage expertise and resources.
- Identification of target crash types and crash risk with corresponding recommended proven safety countermeasures.
- Timeline and goals for implementation and evaluation.

Local road agencies should consider developing an LRSP to be used as a tool for reducing roadway fatalities, injuries, and crashes. ${ }^{1}$ The plan should be viewed as a living document that can be updated to reflect changing local needs and priorities.

\rightarrow For more information on this and other FHWA Proven Safety Countermeasures, please visithttps://safetyfhwa,dot.gov/provencountermeasures:

LI5 Department st Trazeper fation
Federol Highway Administration

PROVEN SAFETY COUNTERMEASURES

CENTER LINE RUMBLE STRIPS
44-64\%

Head-on, opposite-direction, and sideswipe fatal and injury crashes

SHOULDER RUMBLE STRIPS

 13-51\%Single vehicle, run-off-road fatal and injury crashes

Source: NCHRP Beport 641, Gubdorce for the Devigh and Applicatian of Shoubler and Centerthe Rumble Smips.

Shoulder rumble strips and center line rumble stripes are installed on this roadway
Sonice FAMA

Longitudinal rumble strips are milled or raised elements on the pavement intended to alert drivers through vibration and sound that their vehicles have left the travel lane. They can be installed on the shoulder, edge line of the travel lane, or at or near center line of an undivided roadway.

With roadway departure crashes accounting for more than half of the fatal roadway crashes annually in the United States, rumble strips and stripes are designed to address these crashes caused by distracted, drowsy, or otherwise inattentive drivers who drift from their lane. They are most effective when deployed in a systemic application since driver error may occur on all roads.
Transportation agencies should consider

Example of an edgu line rumble stripe. milled center line rumble strips (including in passing zone areas) and milled edge line or shoulder rumble strips with bicycle gaps for systemic safety projects, location-specific corridor safety improvements, as well as reconstruction or resurfacing projects.
\rightarrow For more information on this and other FHWA Proven Safety Countermeasures, please visit https://safety/fhwa.dot.gov/provencountermeasures.
FHWA.SA-17-059
hitp:/fsolely.fltwa dol gov

US. Departrient of Ticrapar lation
Federal Highway Administralion

Systemic Application of Multiple Low-Cost Countermeasures at Stop-Controlled Intersections
 approach.

Sourbe: 5outh Corelina DOT

SAFETY BENEFITS:

10\%
Reduction in injury and fatal crashes

15\%
Reduction in nighttime crashes

This systemic approach to intersection safety involves deploying a group of multiple low-cost countermeasures, such as enhanced signing and pavement markings, at a large number of stopcontrolled intersections within a jurisdiction. It is designed to increase driver awareness and recognition of the intersections and potential conflicts.
The systemic approach to safety has three components:

Example of countermeasures on the through approach. Source South Carolina DOT

Average Benefit-Cost Ratio 12:1

(1) analyze systemwide data to
identify a problem, (2) look for similar risk factors present in severe crashes, and
(3) deploy on a large scale low-cost countermeasures that address the risk factors contributing to crashes.

The low-cost countermeasures for stop-controlled intersections generally consist of the following treatments:

On the Through Approach

- Doubled up (left and right), oversized advance intersection warning signs, with street name sign plaques.
- Enhanced pavement markings that delineate through lane edge lines.

On the Stop Approach

- Doubled up (left and right), oversized advance "Stop Ahead" intersection warning signs.
- Doubled up (left and right), oversized Stop signs.
- Retroreflective sheeting on sign posts.
- Properly placed stop bar.
- Removal of any vegetation, parking, or obstruction that limits sight distance.
- Double arrow warning sign at stem of T-intersections.

[^1] Tramportation Revearch Board, Paper Number 17-05.379, ianuary 2017
\rightarrow For more information on this and other FHWA Proven Safety Countermeasures,
\$afe Roads for a Saler Future please visit https://safety.fhwa.dot.gov/provencountermeasures.

FHWA-SA-17-056
htip:/sately:thwa.dat.gov

US Deparimenl of Tiraveoctation Federal Highway Administration COUNTERMEASURES

Road Safety Audits

A road safety audit is a proactive, formal safety performance examination of an existing or future road or intersection by an independent and multidisciplinary team.

SAFETY BENEFIT:

10-60\%

Reduction in total crashes

Saurce, Blad Safoty Audis: An Eviluation of R5A Arograns and frojects. FHWA-S4-12-037: and FiWh

$0-2+2+2$ established traditional safety review procedures, a road safety audit (RSA) is unique. RSAs are performed by a multidisciplinary team independent of the project. RSAs consider all road users, account for human factors and road user capabilities, are documented in a formal report, and require a formal response from the road owner. (See the eight steps for conducting an RSA below.)
RSAs provide the following benefits:

- Reduced number and severity of crashes due to safer designs.
- Reduced costs resulting from early identification and mitigation of

Mult-dikiplinary team parforms field review during an RSA. safety issues before projects are built.

- Improved awareness of safe design practices.
- Increased opportunities to integrate multimodal safety strategies and proven safety countermeasures.
- Expanded ability to consider human factors in all facets of design.

RSAs can be performed in any phase of project development, from planning through construction. RSAs can also be conducted on any size project, from minor intersection and roadway retrofits to large-scale construction projects. Agencies are encouraged to conduct an RSA at the earliest stage possible, as all roadway design options and alternatives are being explored.

CONDUCTING AN RSA

\rightarrow For more information on this and other FHWA Proven Safety Countermeasures, please visit https://safety.fhwadot.gov/provencountermeasures

Sale Roads for a Soler future ivenhow de mateay cality ieves hes

US. Depaitiment of Trareportation Federal Highway Administration

PROVEN SAFETY

 countermeasures

Reduced LeftTurn Conflict Intersections

Source:FHWh

SAFETY BENEFITS:

RCUT
54\%
Reduction in injury and fatal crashes ${ }^{1}$

MUT
 30\%

Reduction in intersection-related injury crash rate ${ }^{2}$

Edsraet al, Evaluation of /-furn Framecton Dergn Performsroce in Missouti' Decemter 2013.
FTHMA Mecdan (j-Tim mitersedon tofomationsi' Gucle H+WA-54-34-664 Washingian bc-20134i fe. 41-42.

Reduced left-turn conflict intersections are geometric designs that alter how left-turn movements occur in order to simplify decisions and minimize the potential for related crashes. Two highly effective designs that rely on U-turns to complete certain left-turn movements are known as the restricted crossing U-turn (RCUT) and the median U-turn (MUT).

Source: PHWA

Restricted Crossing U-turn (RCUT)

The RCUT intersection modifies the direct left-turn and through movements from cross-street approaches. Minor road traffic makes a right turn followed by a U-turn at a designated location - either signalized or unsignalized - to continue in the desired direction.

The RCUT is suitable for a variety of circumstances, including along rural, high-speed, four-lane, divided highways or signalized routes. It also can be used as an alternative to signalization or constructing an interchange. RCUTs work well when consistently used along a corridor, but also can be used effectively at individual intersections.

Median U-turn (MUT)

The MUT intersection modifies direct left turns from the major approaches. Vehicles proceed through the main intersection, make a U-turn a short distance downstream, followed by a right turn at the main intersection. The U-turns can also be used for modifying the cross-street left turns.

The MUT is an excellent choice for heavily traveled intersections with moderate left-turn volumes. When implemented at multiple intersections along a corridor, the efficient twophase signal operation of the MUT can reduce delay, improve travel times, and create more crossing opportunities for pedestrians and bicyclists.

MUT and RCUT Can Reduce Conflict Points by 50\%

Appendix F
(cont.)

Quapaw Nation of Oklahoma
Tribal Transportation Safety Plan

Q
US. Deppailmant of Tioweporlation Federal Highway Administration

PROVEN SAFETY
 COUNTERMEASURES

Roundabouts

TWO-WAY STOPCONTROLLEDINTERSECTION TO A ROUNDABOUT

Reduction in severe crashes

SIGNALIZED INTERSECTION TO A ROUNDABOUT

The modern roundabout is a type of circular intersection configuration that safely and efficiently moves traffic through an intersection. Roundabouts feature channelized approaches and a center island that results in lower speeds and fewer conflict points. At
 roundabouts, entering traffic yields to vehicles already circulating, leading to improved operational performance.

Roundabouts provide substantial safety and operational benefits compared to other intersection types, most notably a reduction in severe crashes.

Roundabouts can be implemented in both urban and rural areas under a wide range of traffic conditions. They can replace signals, two-way stop controls, and all-way stop controls. Roundabouts are an effective option for managing speed and transitioning traffic from high-speed to low-speed environments, such as freeway interchange ramp terminals, and rural intersections along high-speed roads.

FHWA encourages agencies to consider roundabouts during new construction and reconstruction projects as well as for existing intersections that have been identified as needing safety or operational improvements.

Source: Highmoy Sotety Manual

\rightarrow For more information on this and other FHWA Proven Safety Countermeasures, please visit https://safetyffhwa,dot.gov/provencountermeasures
 Sale Ploads for a Safer Future

 FHWA.SA-17-055Appendix F
(cont.)

Quapaw Nation of Oklahoma Tribal Transportation Safety Plan
u5. Deparfmart of Ticruportalion Federal Highway Administration

SafetyEdgesm

Source: FHNA

SAFETY BENEFIT:

Reduction in fatal and injury crashes

Source: Salety Effects of the SafetyEdge we FHWA-SA-17-044.

SafetyEdge ${ }_{54}$ technology shapes the edge of the pavement at approximately 30 degrees from the pavement cross slope during the paving process. This systemic safety treatment eliminates the vertical
 edge, allowing drifting vehicles to return to the pavement safely. It has minimal effect on asphalt pavement project cost with the potential to improve pavement life.
Vehicles may leave the roadway for various reasons, ranging from distracted driver errors to low visibility, or to the presence of an animal on the road. Exposed vertical pavement edges can cause vehicles to be unstable and prevent their safe return to the roadway. SafetyEdge ${ }_{\text {su }}$ gives drivers the opportunity to return to the roadway while maintaining control of their vehicles.
For both SafetyEdge ${ }_{s M}$ and traditional edge, agencies should bring the adjacent shoulder or slope flush with the top of the pavement. Since over time the edge may become exposed due to settling, erosion, and tire wear, the gentle slope provided by SafetyEdge ${ }_{S H}$ is preferred versus the traditional vertical pavement edge.
Transportation agencies should develop standards for implementing SafetyEdge ${ }_{s M}$ on all new asphalt paving and resurfacing projects where curbs are not present, while encouraging standard application for concrete pavements.

SafetyEdge ${ }_{5 M}$ adds nominal cost to repaving a road.

Calculated benefit-cost ratios typically range between 500-1400

Source: Salety Effects of the SaretyEdge Frwat-54-17-044.

Rural road crashes involving edge drop-offs are

2to4times

more likely to include a fatality than other crashes on similar roads.
\rightarrow For more information on this and other FHWA Proven Safety Countermeasures, please visit https://safety/fhwa.dot.gov/provencountermeasures.

Sale Reads for a Sater future

hittp//folety.ftwa. dot gov

Appendix F
(cont.)

US. Depariment of Tioreportation Federal Highway Administration

COUNTERMEASURES

Left and Right Turn Lanes at Two-Way Stop-Controlled Intersections

SAFETY BENEFITS:

LEFT-TURN LANES 28-48\%
Reduction in total crashes

RIGHT-TURN LANES 14-26\%

Reduction in total crashes

Source: Ahighway Salery Monnal'

Auxiliary turn laneseither for left turns or right turns-provide physical separation between turning traffic that is slowing or stopped and adjacent through traffic at approaches to intersections. Turn lanes can be designed to

5aurce FHWA provide for deceleration prior to a turn, as well as for storage of vehicles that are stopped and waiting for the opportunity to complete a turn.
While tum lanes provide measurable safety and operational benefits at many types of intersections, they are particularly helpful at two-way stop-controlled intersections. Crashes occurring at these intersections are often related to turning maneuvers. Since the major route traffic is free flowing and typically travels at higher speeds, crashes that do occur are often severe. The main crash types include collisions of vehicles turning left across opposing through traffic and rear-end collisions of vehicles turning left or right with other vehicles following closely behind. Turn lanes reduce the potential for these types of crashes.
Installing left-turn lanes and/or right-turn lanes should be considered for the major road approaches for improving safety at both three- and four-leg intersections with two-way stop control on the minor road, where significant turning volumes exist, or where there is a history of turn-related crashes. Pedestrian and bicyclist safety and convenience should also be considered when adding turn lanes at an intersection.

\rightarrow For more information on this and other FHWA Proven Safety Countermeasures, please visit https://safety.fhwa.dot.gov/provencountermeasures.

Safe Roads for a Saler future

[^0]:
 ControíDevoces.

[^1]: Source: T. Le et a, "Safety Effects of Low-Cost Systemic Safety Improvements at Signalided and Stop-Controlled Intersectiong" $96 \begin{aligned} & \text { inh Arrual Meeting of the }\end{aligned}$

