
	

https://kikurimomoxe.pozixig.com/750919069858289?vunusejudebolatudawimizipasugogipozesorodelakuravasowajuwinozaxojezepagodogidesepebagizilizuwizemokarazaxexigirijebovuniwipopafazetevekozunuzovosuba=nenonugeririvosofuxoxulasibilajidiveranivibibimulobotamilebigubomolimeduzuzokuwukesexadokajudutagagi&utm_kwd=bigquery+supported+data+types&kemigepenutonetavigemaruzozopexeduwewebaxavipiwupuwojonazogukuzulasikepekuxubolixomizozupazinufonubotizonufi=febibofoberuleraruniledewunufakadukodometinimexeluwusopipetitisoj




BigQuery	supports	a	wide	range	of	data	types	including	string,	integer,	float,	boolean,	date,	datetime,	geography,	interval,	JSON,	and	numeric	types.	The	numeric	types	include	INT64,	NUMERIC,	BIGNUMERIC,	FLOAT64,	and	BIGDECIMAL.	The	data	type	list	includes	arrays,	boolean,	bytes,	date,	datetime,	geometry,	interval,	JSON,	numeric	types,
range,	string,	struct,	time,	and	timestamp.	When	storing	and	querying	data,	it's	essential	to	keep	in	mind	the	nullable	and	orderable	properties	of	each	data	type.	When	sorting	data,	zeros	and	negative	infinity	values	are	considered	equal.	Groupable	data	types	can	appear	after	GROUP	BY	or	DISTINCT	commands,	except	for	floating	point	numbers.
Floating	point	numbers	with	special	values	like	NULL	or	NaN	are	grouped	together.	Arrays	are	groupable	if	their	elements	are	groupable,	and	two	arrays	belong	to	the	same	group	if	they	have	the	same	number	of	elements	and	corresponding	elements	are	in	the	same	groups.	Grouping	structs	is	also	possible	if	their	field	types	are	groupable.	Two
structs	are	in	the	same	group	if	both	are	NULL	or	all	corresponding	field	values	are	in	the	same	groups.	When	comparing	data,	values	with	the	same	type	can	be	compared	directly.	However,	comparisons	involving	ranges	handle	lower	and	upper	bounds	differently,	with	NULL	bounds	being	sorted	accordingly.	Data	types	supporting	comparisons	can
be	used	in	JOIN	conditions,	such	as	geography	values	which	require	ST_Equals	for	comparison.	Data	Types	Explained:	Join	Conditions,	Collatable	Data	Types,	and	More	Join	conditions	provide	an	explanation	for	collatable	data	types	that	support	collation,	determining	how	to	sort	and	compare	strings.	These	data	types	support	collation:	String	fields	in
a	struct	String	elements	in	an	array	Data	Type	Sizes:	|	Data	Type	|	Size	(logical	bytes)	|	|	---	|	---	|	|	ARRAY	|	Sum	of	element	sizes	|	|	BIGNUMERIC	|	32	|	|	BOOL	|	1	|	|	BYTES	|	2	+	value	size	|	|	DATE	|	8	|	|	DATETIME	|	8	|	|	FLOAT64	|	8	|	|	GEOGRAPHY	|	16	+	24	x	number	of	vertices	|	|	INT64	|	8	|	|	INTERVAL	|	16	|	|	JSON	|	UTF-8	encoded	string	size	|	|
NUMERIC	|	16	|	|	RANGE	|	16	|	|	STRING	|	2	+	UTF-8	encoded	string	size	|	|	STRUCT	|	0	+	contained	field	sizes	|	|	TIME	|	8	|	|	TIMESTAMP	|	8	|	NULL	values	are	calculated	as	0	logical	bytes.	Repeated	columns	store	data	as	arrays,	with	sizes	based	on	the	column	type	and	number	of	values.	Parameterized	Data	Types:	Syntax:	DATA_TYPE(param[,	...])
Use	parameters	to	specify	constraints	for	STRING,	BYTES,	NUMERIC,	and	BIGNUMERIC	data	types.	Declare	a	parameterized	data	type	with	the	DATA_TYPE	syntax.	Enforce	constraints	when	writing	to	a	parameterized	column	or	assigning	to	a	script	variable.	Example:	DECLARE	x	STRING(10);	SET	x	=	"hello";	DECLARE	x	NUMERIC(10)	DEFAULT
12345;	DECLARE	y	NUMERIC(5,	2)	DEFAULT	123.45;	An	array	in	GoogleSQL	is	an	ordered	list	of	zero	or	more	non-array	values,	with	all	elements	sharing	the	same	type.	Arrays	cannot	contain	other	arrays	directly;	instead,	a	struct	must	be	used	to	separate	them.	NULL	arrays	are	treated	as	empty	arrays,	and	writing	a	NULL	array	to	a	table	converts
it	to	an	empty	array.	However,	queries	that	produce	arrays	containing	NULL	elements	raise	an	error.	Array	types	can	have	complex	element	types,	except	for	arrays	themselves,	which	cannot	contain	other	arrays.	Examples	of	array	types	include	simple	arrays,	parameterized	bytes,	and	arrays	of	structs.	SELECT	[a,	b,	c]	FROM	(SELECT	CAST(5	AS
INT64)	AS	a,	CAST(37	AS	FLOAT64)	AS	b,	406	AS	c);	SELECT	ARRAY[1,	2,	3]	AS	floats;	SELECT	GENERATE_ARRAY(11,	33,	2)	AS	odds;	SELECT	GENERATE_DATE_ARRAY('2017-11-21',	'2017-12-31',	INTERVAL	1	WEEK)	AS	date_array;	The	BYTES	type	represents	variable-length	binary	data	that	cannot	be	used	interchangeably	with	strings.	Most
string	functions	are	also	applicable	to	bytes,	but	they	operate	on	raw	bytes	instead	of	Unicode	characters.	Casting	between	strings	and	bytes	enforces	UTF-8	encoding.	A	parameterized	bytes	type,	BYTES(L),	is	a	sequence	of	bytes	with	a	maximum	of	L	bytes	allowed	in	the	binary	string,	where	L	is	a	positive	INT64	value.	If	the	sequence	exceeds	L
bytes,	it	throws	an	OUT_OF_RANGE	error.	The	DATE	type	represents	a	Gregorian	calendar	date,	independent	of	time	zone,	ranging	from	0001-01-01	to	9999-12-31.	A	date	value	doesn't	represent	a	specific	24-hour	time	period	and	may	vary	across	time	zones	during	daylight	saving	time	(DST)	transitions.	The	DATETIME	type	represents	a	Gregorian
date	and	time,	including	the	year,	month,	day,	hour,	minute,	second,	and	subsecond,	ranging	from	0001-01-01	00:00:00	to	9999-12-31	23:59:59.999999.	It's	independent	of	time	zone	and	can	be	displayed	as	a	civil	date	and	time	part.	The	GEOGRAPHY	type	is	a	collection	of	points,	linestrings,	and	polygons	represented	as	a	point	set	or	a	subset	of	the
Earth's	surface,	based	on	the	OGC	Simple	Features	specification	(SFS).	It	includes	geography	objects	such	as	points,	linestrings,	and	polygons.	Given	article	text	here	Polygon	Representation	in	GeoJSON	A	polygon	is	represented	as	a	planar	surface	defined	by	1	exterior	boundary	and	0	or	more	interior	boundaries.	Each	interior	boundary	defines	a
hole	in	the	polygon,	with	boundary	loops	oriented	to	traverse	them	counterclockwise	if	you	move	around	the	vertices	in	order,	resulting	in	the	interior	being	on	the	left	side.	GeoJSON	Polygon	Syntax	The	syntax	is	POLYGON(interior_ring[,	...]),	where	interior_ring	consists	of	(point[,	...]).	Examples	include:	-	POLYGON((0	0,	2	2,	2	0,	0	0),	(2	2,	3	4,	2	4,	2
2))	-	POLYGON	EMPTY	MultiPoint	in	GeoJSON	A	collection	of	points	is	represented	by	MULTIPOINT(point[,	...]).	An	example	is:	-	MULTIPOINT(0	32,	123	9,	48	67)	MULTIPOINT	EMPTY	MultiLineString	in	GeoJSON	Represents	a	multilinestring,	which	is	a	collection	of	linestrings,	using	the	syntax	MULTILINESTRING((linestring)[,	...]).	An	example
includes:	-	MULTILINESTRING((2	2,	3	4),	(5	6,	7	7))	MULTILINESTRING	EMPTY	MultiPolygon	in	GeoJSON	Represents	a	multipolygon,	which	is	a	collection	of	polygons,	using	the	syntax	MULTIPOLYGON((polygon)[,	...]).	An	example	includes:	-	MULTIPOLYGON(((0	-1,	1	0,	1	1,	0	-1)),	((0	0,	2	2,	3	0,	0	0),	(2	2,	3	4,	2	4,	1	9)))	MULTIPOLYGON	EMPTY
GeometryCollection	in	GeoJSON	Represents	a	geometry	collection	with	elements	of	different	dimensions	or	an	empty	geography,	using	the	syntax	GEOMETRYCOLLECTION(geography_object[,	...]).	An	example	includes:	-	GEOMETRYCOLLECTION(MULTIPOINT(-1	2,	0	12),	LINESTRING(-2	4,	0	6))	GEOMETRYCOLLECTION	EMPTY	Simple
Arrangements	and	Empty	Geometries	The	points,	linestrings,	and	polygons	in	a	geography	value	form	a	simple	arrangement	on	the	WGS84	reference	ellipsoid.	A	simple	arrangement	is	one	where	no	point	on	the	WGS84	surface	is	contained	by	multiple	elements	of	the	collection.	If	self-intersections	exist,	they	are	automatically	removed.	An	empty
geography	isn't	associated	with	a	particular	geometry	shape.	For	example:	-	SELECT	ST_GEOGFROMTEXT('POINT	EMPTY')	AS	a,	ST_GEOGFROMTEXT('GEOMETRYCOLLECTION	EMPTY')	AS	b	Result:	|	a	|	b	|	|------------------|	|	GEOMETRYCOLLECTION	EMPTY	|	GEOMETRYCOLLECTION	EMPTY	|	Compound	Geometry	Objects	The	structure	of
compound	geometry	objects	isn't	preserved	if	a	simpler	type	can	be	produced.	For	example,	in	column	b,	GEOMETRYCOLLECTION	with	(POINT(1	1)	and	POINT(2	2)	is	converted	into	the	simplest	possible	geometry,	MULTIPOINT(1	1,	2	2).	-	SELECT	ST_GEOGFROMTEXT('MULTIPOINT(1	1,	2	2)')	AS	a,
ST_GEOGFROMTEXT('GEOMETRYCOLLECTION(POINT(1	1),	POINT(2	2))')	AS	b	Result:	|	a	|	b	|	|------------------|	|	MULTIPOINT(1	1,	2	2)	|	MULTIPOINT(1	1,	2	2)|	An	INTERVAL	object	represents	a	duration	or	time	period	without	specifying	a	particular	point	in	time.	It	can	be	created	using	various	methods.	One	way	is	to	use	an	interval	literal	that
supports	only	one	datetime	part	or	a	range	of	datetime	parts.	For	example,	to	create	an	interval	representing	1	year	and	0	months,	you	can	use	the	following	syntax:	INTERVAL	[sign]Y-M	[sign]D	[sign]H:M:S[.F]	Where	Y	is	the	year,	M	is	the	month,	D	is	the	day,	H	is	the	hour,	M	is	the	minute,	S	is	the	second,	and	[.F]	represents	up	to	six	fractional
digits	(microsecond	precision).	Another	way	is	to	use	an	INT64	expression	and	one	interval-supported	datetime	part,	as	shown	in	examples:	INTERVAL	int64_expression	datetime_part	For	instance,	"1-0	0:0:0"	represents	1	year,	0	months,	0	days,	0	hours,	0	minutes,	and	0	seconds.	Alternatively,	you	can	construct	an	INTERVAL	object	using	a	string
that	contains	the	datetime	parts	you	want	to	include,	a	starting	datetime	part,	and	an	ending	datetime	part.	This	format	is	represented	as:	INTERVAL	datetime_parts_string	starting_datetime_part	TO	ending_datetime_part	For	example,	"2-11	YEAR	TO	MONTH"	represents	0	years,	8	months,	and	so	on.	There	are	also	specific	formats	for	interval-
supported	datetime	parts,	such	as	Y-M	D,	Y-M	D	H,	Y-M	D	H:M,	etc.	These	formats	allow	you	to	specify	a	range	of	values	within	an	INTERVAL	object.	The	examples	provided	in	the	original	text	demonstrate	various	ways	to	construct	an	INTERVAL	object,	including	using	interval	literals	and	string	formats	with	specific	syntax.	The	following	date
components	can	be	used	to	create	time	intervals:	YEAR	(Y)	representing	the	number	of	years,	QUARTER	(Q)	converted	to	three	months	(M),	MONTH	(M)	with	each	12	months	equating	to	one	year.	WEEK	(W)	and	DAY	(D)	are	also	usable,	with	weeks	being	equivalent	to	seven	days	(D).	For	time	components:	HOUR	(H),	MINUTE	(M),	SECOND	(S)	with
60	seconds	converting	to	one	minute,	and	MICROSECOND	(US)	for	up	to	six	fractional	digits	of	precision.	JSON	data	can	be	represented	using	a	lightweight	format,	preserving	booleans,	strings,	and	nulls	exactly	while	ignoring	whitespace	characters.	JSON	values	can	store	integers	between	-9.223372036854775808	and	18.446744073709551615	and
floating-point	numbers	within	the	FLOAT64	domain.	Array	elements	maintain	their	order,	but	object	member	order	is	not	guaranteed	or	preserved,	with	up	to	500	levels	of	nesting	allowed.	Numeric	types	include	INT64	(with	aliases	INT,	SMALLINT,	INTEGER,	BIGINT,	TINYINT,	BYTEINT)	and	DECIMAL	types	(NUMERIC,	BIGNUMERIC).	The	former
can	represent	integers	from	-9.223372036854775808	to	18.446744073709551615	while	the	latter	allows	decimal	fractions	with	a	maximum	precision	of	38	and	scale	of	9.	BigQuery	data	types	for	numerical	values.	####DECIMAL	Type	-	Precision	and	scale	limits:	max(1,	S)	≤	P	≤	S	+	29.	-	Scale	range:	0	≤	S	≤	9.	-	If	a	value	has	more	than	S	decimal
digits,	it	is	rounded	to	S	decimal	digits.	####BIGNUMERIC	Type	-	Maximum	precision	and	scale	limits:	max(1,	S)	≤	P	≤	S	+	38.	-	Scale	range:	0	≤	S	≤	38.	-	If	a	value	has	more	than	S	decimal	digits,	the	value	is	rounded	to	S	decimal	digits.	####Floating	Point	Type	-	Double	precision	numeric	values	with	fractional	components.	-	Special	non-numeric
values:	NaN	and	+/-inf.	-	Arithmetic	operators	provide	standard	IEEE-754	behavior	for	all	finite	input	values	that	produce	finite	output.	-	Function	calls	and	operators	return	an	overflow	error	if	the	input	is	finite	but	the	output	would	be	non-finite.	-	All	such	cases	are	noted	explicitly	in	Mathematical	functions.	Floating	Point	Arithmetic	Considerations
and	Range	Type	Usage	for	Deterministic	Results	Given	article	text	here	Strings	in	this	system	count	characters,	not	bytes,	and	assign	a	numeric	code	point	to	each	Unicode	character.	Lower	code	points	mean	lower	characters.	Most	string	functions	operate	on	bytes	rather	than	Unicode	characters.	Strings	and	bytes	are	separate	types	that	can't	be
converted	implicitly.	Explicit	casting	between	them	does	UTF-8	encoding	and	decoding;	casting	bytes	to	strings	fails	if	the	bytes	aren't	valid	UTF-8.	There's	a	parameterized	string	type	STRING(L)	with	a	maximum	of	L	Unicode	characters	allowed,	where	L	is	an	INT64	value.	If	more	than	L	characters	are	assigned,	it	throws	an	OUT_OF_RANGE	error.
Struct	types	are	declared	using	angle	brackets	and	can	contain	ordered	fields	with	arbitrary	types.	They're	used	in	various	scenarios	such	as	declaring	simple	structs	like	STRUCT	for	a	single	integer	field	or	complex	structs	with	parameterized	string	fields	like	STRUCT.	Structs	can	be	constructed	using	tuple	syntax	(expr1,	expr2	[,	...	])	to	create	an
anonymous	struct	type.	This	syntax	is	also	used	in	comparisons	and	WHERE	clauses.	The	output	of	these	operations	are	STRUCT	types	that	derive	their	field	data	types	from	the	input	expressions	or	column	data	types.	String	structures	can	be	defined	with	an	explicit	data	type	using	typed	syntax.	The	output	type	is	determined	by	the	provided	field
type,	and	the	input	expression	is	coerced	to	match	if	the	types	are	different.	The	number	of	expressions	must	equal	the	number	of	fields	in	the	type,	and	the	expression	types	must	be	coercible	or	literal-coercible	to	the	field	types.	Examples	of	typed	syntax	include:	*	`STRUCT(5)`	-	A	struct	with	an	integer	value	of	5	*	`STRUCT("2011-05-05")`	-	A	struct
with	a	date	value	of	"2011-05-05"	*	`STRUCT(1,	t.str_	col)`	-	A	struct	with	two	fields:	x	as	an	integer	and	y	as	a	string	Structs	can	be	directly	compared	using	equality	operators	such	as	equal	(=),	not	equal	(!=	or	)	and	[NOT]	IN.	However,	this	comparison	is	done	pairwise	in	ordinal	order,	ignoring	any	field	names.	Time	types	represent	a	time	of	day,
independent	of	date	and	time	zone.	Timestamp	values	represent	an	absolute	point	in	time,	with	microsecond	precision.	Canonical	formats	for	time	and	timestamp	literals	include:	*	Time:	`[H]H:[M]M:[S]S[.F]`	*	Timestamp:	`civil_	date_part[time_part	[time_zone]]	|	civil_date_part[time_part[time_zone_offset]]`	Note	that	timestamps	themselves	do	not
have	a	time	zone,	but	may	be	displayed	with	one	for	human	readability.	Given	article	text	here	2023-04-01T12:00:00+02:00	When	working	with	timestamps,	it's	essential	to	use	a	space	between	the	time	zone	name	and	the	rest	of	the	timestamp.	For	example,	"2014-09-27	12:30:00.45	America/Los_Angeles".	However,	not	all	time	zones	are
interchangeable,	even	if	they	report	the	same	time	during	certain	periods.	Leap	seconds	don't	affect	timestamp	computations,	which	use	Unix-style	timestamps	that	don't	account	for	leap	seconds.	Instead,	these	seconds	can	be	observed	through	functions	that	measure	real-world	time.	When	it	comes	to	data	types,	a	classification	governs	how
compilers	and	programming	languages	collect,	store,	and	interpret	data.	Google	BigQuery	is	a	fully	managed	enterprise	data	warehouse	with	built-in	machine	learning	and	business	intelligence	capabilities.	It	enables	users	to	process	large	datasets	and	supports	various	data	types,	including	real-time	and	batch	data	in	structured,	semi-structured,	or
unstructured	formats.	BigQuery	currently	offers	eight	supported	data	types:	NUMERIC	(INT64,	NUMERIC,	BIGNUMERIC,	FLOAT64),	BOOLEAN,	STRING,	BYTES,	GEOGRAPHY,	ARRAY,	STRUCT.	These	data	types	are	crucial	for	manipulating	and	analyzing	data	operations.	Numerical	data	types	in	BigQuery	include	INT64,	NUMERIC	DECIMAL,
BIGNUMERIC,	and	FLOAT64.	These	types	allow	for	various	mathematical	operations	and	are	suitable	for	financial	calculations.	The	main	difference	between	these	types	lies	in	their	precision,	ranging	from	38	decimal	digits	for	NUMERIC	to	76.76	for	BIGNUMERIC.	FLOAT64	supports	double-precision	numeric	values	with	fractional	components	and
includes	unique	non-numeric	values	like	NaN,	+inf,	and	-inf.	STRING	STRING	is	UTF-8	encoded	variable-length	character	data,	commonly	used	for	storing	user-generated	values	such	as	billing	addresses,	usernames,	survey	replies,	tweets,	and	email	addresses.	It	must	be	quoted	with	either	single	('),	double	("),	or	triple	quotation	marks.	Given	article
text	here	2022-12-12	10:59:13	is	a	TIMESTAMP	value	that	represents	an	exact	point	in	time	with	microsecond	precision	on	a	particular	day	in	a	time	zone.	It	has	the	same	meaning	as	the	DATE	data	type	but	includes	the	letter	T	separating	the	date	part	and	the	time	part	of	the	values.	The	format	of	a	TIMESTAMP	is	YYYY-[M]M-[D]D[(	|T)[H]H:[M]M:
[S]S[.DDDDDD]][time	zone].	It	ranges	from	0001-01-01	00:00:00	to	9999-12-31	23:59:59.999999.	When	working	with	TIMESTAMP,	the	time	zone	is	assumed	to	be	in	UTC	by	default	and	can	be	precise	down	to	microseconds	unless	a	specific	time	zone	is	specified.	SELECT	cast('2022-12-12	10:59:13.0245-2:00'	AS	TIMESTAMP)	as	timestamp	The
TIMESTAMP	data	type	supports	mathematical	operations	with	date	and	time	values,	allowing	users	to	answer	business	questions	such	as	"How	long	did	it	take	product	A	to	be	delivered	after	it	was	shipped?"	The	GEOGRAPHY	data	type	represents	a	location	on	Earth	using	longitude/latitude	values	and	can	be	used	to	build	maps	and	routes.	It	is	based
on	the	Open	Geospatial	Consortium's	Simple	Features	specification.	SELECT	cast(ST_GEOGFROMTEXT('POINT(6.4550575,3.3941795)')	as	GEOGRAPHY)	geography	The	spatial	functions	of	BigQuery	support	SQL/MM	3	specification.	The	ARRAY	data	type	is	an	ordered	list	of	zero	or	more	elements	of	any	non-ARRAY	type,	but	the	elements	must	share
the	same	type.	SELECT	cast(['sync',	'store',	'access']	as	ARRAY)	STRUCTs	are	containers	of	ordered	fields	with	required	data	types	and	optional	field	names,	supporting	NULL	values.	They	can	be	declared	using	angle	brackets	and	contain	arbitrarily	complex	elements.	SELECT	cast((27,'Panoply')	as	STRUCT)	struct	Get	instant	access	to	all	your
business	data	with	Panoply!	Seamlessly	integrate	multiple	sources	of	data	into	a	single,	cloud-based	repository,	effortlessly	mapping	out	data	types,	analyzing	trends,	and	gaining	valuable	insights	using	BigQuery.	Take	the	first	step	by	requesting	a	complimentary	demo	today	and	discover	the	power	of	unified	data	management.	This	article	was	crafted
by	Ifeanyi	Benedict	Iheagwara,	a	seasoned	data	analyst	and	Power	Platform	developer	driven	by	technical	writing,	open-source	contributions,	and	community	building.	With	expertise	in	machine	learning,	data	science,	and	DevOps,	Ifeanyi	shares	knowledge	on	these	topics	while	actively	participating	in	global	ecosystems.

Bigquery	supported	formats.		Bigquery	data	types.		Data	types	sql	bigquery.		Bigquery	types.		Bigtable	supported	data	types.		Bigquery	date	type.		


