Recent studies have shown that polysaccharides and polysaccharide-protein complexes from this mushroom have significant anti-cancer activity (Hishida et al., 1988, Kurashige et al., 1997). A limited number of clinical studies in Japan and the USA have shown that a purified fraction of polysaccharide is highly effective against cancers of the breast, lung, liver, prostate and brain. Details of clinical trials will be discussed later. Other fractions from G. frondosa exhibit immunological enhancement together with properties of anti-HIV, antihypertension, antidiabetic, and antiobesity (Zhuang and Mizuno, 1999). It is interesting to note that the β-glucan fractions from this mushroom are now being used by over 3,000 health professionals in the US for the prevention and treatment of:

- Flu and common infection (bacteria and viruses)
- AIDS (HIV)
- Diabetes mellitus
- Hypertension
- Hypercholesterolemia
- Urinary tract infections (particularly for women) (Professor Konno – personal communication).

Capsules with dried Maitake form widely accepted dietary supplements and apart from the Far East are now being extensively marketed in US and in Europe. Other examples are Maitake tea, whole Maitake powder and a Maitake drink.

Key active constituents:

1,3 and 1,6 Beta glucans (antitumour and immunomodulating)
Commercial product “Grifolan”
Flammulina velutipes

This is one of the most popular edible mushrooms in China and Japan where it is known as *Enokitake*. In nature it grows on stumps or decayed wood of hardwood trees as a typical mushroom. It is now mostly produced by artificial cultivation from jars of sawdust mix. After growth through the sawdust medium and as the primordia form on the surface, a plastic collar is placed around the neck of the jar and with special environmental conditions, results in the formation of elongated stipes and tiny mushroom heads. While they may be cooked in various ways they can also be used directly in salads. This is a major edible mushroom. It can be slightly salty and bitter in taste and is used in traditional Chinese medicine to treat liver diseases and gastric ulcers. Polysaccharides from this mushroom have been shown to inhibit the growth of cancers in a number of xenograph models.

Flammulin, a basic simple protein from *F. velutipes* is able to markedly inhibit tumour cells (Komatsu *et al.*, 1963). Flammulin has been purified to a crystalline state and clinical trials are now in progress (Zhang *et al.*, 1999). The first scientific paper stating that edible mushrooms were effective against a solid tumour was with *Flammulina*.

A new antitumour glycoprotein has been isolated from cultured mycelium of this fungus - Proflamin. It is useful in combination therapy with other chemotherapy agents (Ikekawa, 1995).

Furthermore, an epidemiological study in Nagano Prefecture, Japan showed that the cancer death rate among farmers producing *F. velutipes* was remarkably lower than that of other people in the Prefecture and in Japan overall (Ikekawa, 2001).
Key active ingredients:

Beta-glucan-protein (antitumour and immunomodulating)
Beta-glycoprotein-Proflamin (antitumour)

Fig. 8a *F. velutipes* growing naturally on tree stump
Pleurotus ostreatus

The fruit-body of this mushroom is oyster-shaped and hence the common name Oyster Mushroom. It grows in layered clusters on deciduous trees in many parts of the world. It is one of the easiest to grow, most often on straw or sawdust.
Fig. 9a *P. ostreatus* growing on decayed timber
logs, and has become one of the most popular edible mushrooms with a pleasant odour and taste. In the Sung dynasty (A.D. 420-479) it was referred to as “the mushroom of flower heaven” (Stamets, 1993, Hobbs, 1995).

Fig. 9b *P. ostreatus* growing on sawdust mixture

The medicinally beneficial effects of *Pleurotus* spp. were discovered independently on different continents. The awareness of their medicinal properties comes not only from Asia but from the folklore of central Europe, South America and African (Gunde-Cimerman, 1999). While first artificially cultivated in USA, production is now worldwide. There have been a number of studies suggesting a
role in numerous diseases with its anti-cancer activity, immunomodulating effects, and antiviral, antibiotic and anti-inflammatory activities. The major cause of death in the Western hemisphere is coronary artery disease with hypercholesterolemia as a primary risk factor. Drug therapy for lowering cholesterol has made considerable use of the pharmacologic agent lovastatin (mevinolin) and its analogues. Species of the genus *Pleurotus* are excellent producers of lovastatin and as such, *Pleurotus* could be considered as a functional food with natural cholesterol-lowering ability (Gunde-Cimerman, 1999). However, large scale production of lovastatin from fruit-bodies is not deemed commercially viable because of variability in fruit-body composition. Lovastatin is normally found only in the lamella and basidiospores and not in the stipe and cap. Mycelial cultivation could be the way ahead.

Key active constituents:

Beta-glucans (antitumour, immunomodulation)
Lovastatin (cholesterol-lowering)

Trametes (Coriolus) versicolor

This is a fungus with many synonyms but *Trametes* is now the accepted genus name. The multicoloured cap resembles a ‘turkey tail’ and occurs as overlapping clusters on dead logs in most parts of the world. This is not an edible fungus but hot water extracts have been used in traditional Chinese medicine from historical times for a wide range of ailments (Ying *et al*., 1987). Modern studies have produced two extremely important compounds, PSK or “Krestin”, a water-soluble protein-bound polysaccharide and PSP, a polysaccharide-peptide both derived from mycelial cultures of the fungus. PSK has been shown to act directly on tumour cells (cytostatic and cytotoxic) as well as indirectly in the host to boost cellular
immunity (Tsukagoshi, 1984). PSK also shows antiviral activity through stimulation of interferon production. PSP is a powerful immunostimulant and anti-cancer agent (Yang, 1993, Ng, 1998). There have been a wide range of clinical trials for a range of human cancers. In most cases when taken with traditional chemotherapy or radiotherapy there have been significant increases in patient longevity. In 1987 “Krestin” accounted for 25% of the total expenditure of anti-cancer agents in Japan (Fukushima, 1989). A polysaccharo-peptide isolated from this mushroom has been shown to inhibit the HIV-1 (Collins and Ng, 1997) while a polysaccharide showed chemopreventive activity in an in vitro model (Kun et al., 1999). PSP and PSK are
just beginning to be available in the US and Europe. These compounds will be extensively discussed in later Chapters.

Key active constituents:

- Beta-glucan-proteins (antitumour, antiviral, immunomodulating)
- Ergoposterol (provitamin D2)

Tremella mesenterica and T. fuciformis

This fungus is commonly known as the “white auricularia” or “white jelly fungus”, and in Japan, *Shirokikurage*, with a jelly-like, translucent fruiting-body which usually grows on deciduous trees in warm climates worldwide. It can now be grown artificially and is being increasingly consumed in Asia.

It has a long historical use in traditional Chinese medicine as an immune tonic and for treating debility and exhaustion together with many other ailments including skin-care. It contains acidic polysaccharides especially glucuronoxylomannan, readily extracted with hot water giving a smooth and stable solution used in Oriental cuisine. The polysaccharides of this fungus show anti-cancer activity and can enhance immune functions (Hobbs, 1995). Clinical trials have shown it to be effective in treating radio- and chemo-therapy-induced leukopenia, boosting immunological functions and stimulating leukocyte activity (Hu and But, 1987). Med Myco Ltd. (Israel) have developed a submerged fermentation method to produce Tremellastin from *T. mesenterica* mycelium which contains 50% glucuronoxylomannan, together with proteins rich in amino acids, dietary fibre and vitamins of the B group. Dietary supplements from *Tremella* are only now beginning to expand into the Asian market, and they will certainly be of special significance in the cosmetic industry.
Fig. 11a *T. mesenterica* growing naturally on deciduous tree

Fig. 11b *T. fuciformis* growing naturally on deciduous tree
Key active constituents:

Acidic polysaccharides (glucuronoxylomannan) (antitumour, immunostimulatory, antidiabetic, skin enhancing)

Cordyceps sinensis and C. sobolifera

The fungi grow as parasites in larvae of Lepidoptera, gradually taking over the entire larval body. The diseased larvae bury themselves in the soil and die. Later the fungal mass or stroma grows out of the pupa and can be identified and collected.

The caterpillar fungus or Tochukaso has been highly regarded in Chinese medicine for many centuries. It is not a mushroom type fungus and the fruiting structure cannot be cultivated or cultured. The complete structure can be used in many forms, whole, powdered or extracted and has many applications in Chinese medicine (Hobbs, 1995; Halpern, 1999). Anti-cancer polysaccharides have been isolated from several species of Cordyceps and some have been shown to have hypoglycaemic activity as well (Jones, 1997; Itami and Yahagi, 1990; Kun 1998). A major concern with herbal medicine using Cordyceps collected from nature is quality and safety.

However, the pure mycelium of these parasitic fungi can now be easily cultivated in fermentors and is attracting considerable interest as an agent to treat fatigue and improve motor function (Mizuno, 1999). The major chemical, pharmacological and toxicological studies on Cordyceps sinensis have been reviewed for English and Chinese literature by Zhu et al. (1988a,b). These studies show that the main activities of the fungus are in oxygen-free-radical scavenging.
Fig. 12 *Cordyceps* spp. stroma growing out of colonised insects
With this particular fungus it is clear that there will be increased usage of fermenter-produced mycelium. Such methods use selected media under aseptic conditions, providing better quality and homogeneity through process control.

Key active constituents:

Galactomannans (antitumour, immunostimulating)
Cordycepin
Sterols

Schizophyllum commune

This is a small, whitish fungus with no stalk which grows on dead trees throughout the year. It is a very common fungus and has worldwide distribution (Hobbs, 1995). Pharmacologically it is extremely important because it produces the polysaccharide Schizophyllan which shows considerable anti-cancer activity in xenograph and clinical practice. There have been numerous clinical trials with Schizophyllan which will be discussed later (Ooi and Liu, 2000).

Key active constituents:

Beta-glucans (antitumour and immunomodulation).
Fig. 13a *S. commune* growing naturally on dead deciduous tree

Fig. 13b *S. commune* view of underside of fruitbody
Agaricus blazei

This mushroom was first discovered in the USA in the 1940s but its main commercial cultivation now occurs in Japan and Brazil. In Japan it is called *Himematsutake* and is one of the most expensive medicinal mushrooms. A novel polysaccharide-protein complex has been shown to be highly active against a variety of xenographs (Ito *et al.*, 1997).

Key active constituents:

Beta (1,3)-D-glucan, Beta (1-4)-D-glucan, Beta (1-6)-D-glucan (antitumour and immune enhancing)
Proteoglycans (antitumour).

Fig. 14 *Agaricus blazei*, Himematsutake or the Almond Portobella, grown in cased leachate cow manure (Stamets, 2000)
References

Acknowledgement:

Figs. 1a, 2a, 3, 4, 5, 6, 7a,b, 8a,b, 9a,b, 10, 11a, , 12, 13a,b, are reproduced with permission from ISBN4-635-09020-5 published by Yama-Kei Publishers Co. Ltd., 1-1-33, Shiba-daimon, Minato-ku, Tokyo.