Soil flux: an important component of total carbon budget.

Soil respiration can be defined as the net CO₂ production of a soil. The amount of gas exchange taking place is frequently used as an indicator of microbial soil activity and so is used to characterise the “health” of that soil. The rate of soil flux is influenced by a variety of environmental parameters especially organic matter content, soil moisture and soil temperature.

Natural biomass respiration from soil is a major carbon source. Understanding soil flux and its relationship with other sources and sinks within the carbon cycle are currently subject to increasing scientific scrutiny in relation to global climatic change.

The ADC BioScientific ACE system (Automated Soil CO₂ Exchange System) is designed for the long-term, unattended monitoring of soil flux. The system is both easy to set up and robust for field conditions.
ACE Station

Integral CO₂ analyser inside soil chamber

Each ACE Station features a highly accurate CO₂ infrared gas analyser housed directly inside the soil chamber assembly. There are therefore no long gas tubing connections between the soil chamber and a separate analyser.

The close proximity of the analyser ensures the fastest possible response times to CO₂ changes and also avoids any potential gas “hang ups” in long lengths of tubing. Experimental set up is much simpler and the system is much more field robust.

The open chamber is designed with a pressure release valve and fan to minimise any internal pressure gradients.

Complete system

Each ACE Station is a complete, fully integrated soil flux system comprising the anodised aluminum soil chamber and arm that pivots from the control console, where measurements are both displayed and recorded.

Each ACE Station can operate fully independently for single point measurements.

The power efficient ACE Station can be powered by battery, solar panel or wind turbine. Typically a 40Ah car battery will run an ACE Station continuously for around 28 days.

Long-term unattended operation

The automated design of the ACE Station allows the soil area being analysed to be exposed to ambient conditions, between measurement cycles.

At user set time intervals the chamber will automatically close to carry out soil flux measurements. Once these measurements are completed the chamber will automatically return to its open position.

The novel “swinging arm” mechanism is designed to be reliable and field rugged and to ensure a good seal when the chamber is closed.

When the chamber is open, the Station will powerdown to an idle or low power mode.

Easy to set up and program

The ACE Station is easy to set up and program.

As the system is fully integrated there is no gas tubing or complex gas circuits to set up and connect between an analyser and a separate soil chamber.

The control console features a large display screen. Full programming is achieved using just 5 keys that drive a series of easy to use menus.

Gas exchange data, soil flux calculations and other sensor measurements are all displayed and recorded by the ACE Station. Data storage is on easily exchangeable CompactFlash cards.
Open and Closed system modes

ACE Stations are available in either a closed system or an open system configuration.

In both measurement modes the chamber is closed and a delta CO₂ is determined from the difference between the reference gas entering the chamber and the analysis gas within the chamber at the end of the experiment.

Closed Mode: A measurement is made once the chamber is sealed. CO₂ inside the large 2.7L chamber will then increase due to soil activity. The rate of soil flux is determined from the increase in CO₂ concentration after a user defined time interval. These measurements are simple and fast.

Open Mode: When the chamber closes ambient air is passed through the smaller 1.0L chamber at a controlled flow rate. Soil flux or rate of change is then determined at equilibrated conditions within the chamber. These measurements, although slower, are regarded as more accurate by many researchers as they are less influenced by changes within the enclosed chamber or variations in the soil structure.

An open system ACE Station may also be used in a closed mode by the user exchanging the open chamber head for a larger closed system head.

Transparent versions of both the open and closed chambers are available for measuring net CO₂ exchange within the chamber area.

Flux, moisture and temperature data

Soil flux is expressed as Net CO₂ exchange rate (NCER).

In addition to the CO₂ exchange data, a PAR sensor is provided, mounted on the ACE Station chamber.

Up to 6 soil temperature sensors and up to 4 soil moisture sensors may also be directly connected to each ACE Station. These measurements may then be displayed and recorded along side the gas exchange and soil flux data.

The temperature sensors may be either thermostors or thermocouples.

The user may configure the system for use with many commercially available soil moisture probes.

ACE Network

Although an ACE Station can function fully independently for single point measurements, it is typical that a number of Stations will be used in combination, as a network, at an experimental field site.

Up to 32 ACE Stations can be connected together in an ACE Network via an ACE Master control unit. This Master control unit will supply power to and collect data from all Stations and control all Stations within the experiment.

Connections between the ACE Master control unit and each ACE Station is by electrical cable only. As each ACE Station is a fully integrated system with an integral CO₂ IRGA, no long lengths of gas tubing are needed to be run over the field site. As a result each ACE Station can be in excess of 100 meters from the Master control unit.

The ACE network is very power efficient as no large pumps are required to transport gas from the chamber to an analyser several meters away.

Individual ACE Stations can be taken off the ACE network without the need to stop the whole experiment.
ACE Master control unit

The ACE Master control unit is a small, waterproof, steel enclosure that features a graphic display, CompactFlash card drive, 32 ACE Station docking ports and 2 battery ports.

Full programming and control is achieved using just 5 keys that drive a series of easy to use menus.

The ACE Master control unit monitors all Stations within the experimental network and flags any problems encountered.

The Master control unit graphic display may be used to review and plot experiments in the field. The researcher may review:

- One Station, all parameters, one time point.
- One parameter, one time point, all Stations
- One Station, one parameter, all time points

Power is by 12V or 24V batteries or a suitable alternative supply.

ACE Station Provisional Specification

Measurement of CO₂:
0-600ppm (26.8mmols m⁻³), 2ppm resolution Infrared gas analysis, Differential open or closed system, housed directly adjacent to soil chamber.

Measurement of PAR:
0 - 3000µmols m⁻² sec⁻¹ Silicon photocell.

Measurement of soil temperature:
6 user selectable inputs for thermistor or thermocouples.

Measurement of soil moisture:
4 user selectable inputs for industry standard sensors.

Flow control to chamber: 100-500ml min⁻¹
Flow control accuracy: +/- 2% of f.s.d.

Display:
240 x 64 dot matrix LCD

Programming:
Each chamber has a user-friendly interface driven by only 5 keys.

Recorded data:
Removable CompactFlash cards.

Internal battery:
12V standby 1.0Ah battery back up.

Power supply:
External source battery, solar panel or wind turbine. One 40Ah car battery provides power for approximately 28 days of continuous use.

RS232 output:
User selectable rates of up to 19200 baud.

Electrical connections:
Robust, waterproof 3 pin din

Gas connections:
3mm barbed.

Dimensions:
82 x 33 x 13 cms

Closed chamber volume: 2.7L

Open chamber volume: 1.0L

Soil collar diameter: 23cm

Weight: 7.0 kg

ACE Master Control Unit

Construction:
Steel electrical sealed enclosure

Connections:
32 ACE Station docking ports and 2 battery ports

Dimensions:
30 x 30 x 15 cms

ADC BioScientific Ltd

ADC BioScientific is one of the world’s leading developers of high quality, field portable and easy to use gas exchange instrumentation for a variety of geoscience research applications.

Today in hundreds of research institutes throughout the world, ADC gas exchange instrumentation is playing a vital role in improving our understanding of the carbon cycle and its impact on life on earth.