

PROCESS OPTIMIZATION

Your Ticket to Success

May 29, 2015 11:20 AM - 12:00 PM and 3:00 PM - 4:30 PM

Ragy Isaac¹, Jim Murphy², Jeff Behrens³, Norm Harbin⁴, Jim Messer⁵, Marty Kaczmarek⁶, Derek Awalt⁷, Mike Monter⁸

¹President, Quality Promoter International

²Field Service Engineer, Goss International

³Technical Director, RBP Chemical

⁴Business Director, News Ink Flint Group

⁵ Applications Project Manager, Flint Group

⁶Technical Sales Manager, Baldwin

⁷Global Marketing Manager, Kodak

⁸Vice President of Operations, Prolmage

- → Pre-press Errors
 - → Plate cut, CtP, Punch and Bend
- → Mechanical problems on the press
 - → Locking pin position adjustment
 - → Cylinder gripping system
 - → Cylinder and blanket alignment and position
- → Paper FanOut
- → Human error:
 - → Plates alignment on punch, bender, and press.

•000

0000

- → On-press dynamic solution
 - → Bustle wheel to compensate for paper FanOut
 - → Auto register to align the plate cylinders
- → Off-press static solution
 - → Software solution such as Prolmage "Press Register "
 - → Shifts, rotates and scales TIFF image on plate

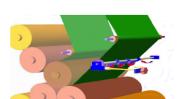


Figure 1: Bustle Wheel

Figure 2: QuadTech Auto Register

SOFTWARE SOLUTION - "PRESS REGISTER"

Figure 3: Before pre-press register correction

Figure 4: After pre-press register correction

Dampening Solution

INK OPTIMIZATION

- → What is ink optimization?
 - → Generally refers to Gray Component Replacement (GCR)
 - → Transform "CMY" ink components into "K" ink
- → Why use ink optimization?
 - → Reduces cost
 - → Less rub-off, smearing, and show-through
 - → Cleaner press
- → Key Features
 - → Preserve image quality
 - → Uses ICC profile
- → Things to watch-out for
 - → Excess replacement of "CMY" with "K" causes density fluctuation and bad ink/water balance

INK PIPING

Pre-Press

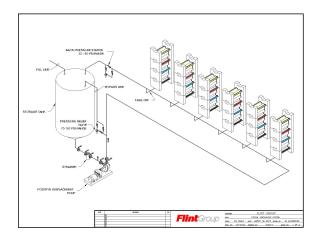


Figure 5: Ink Circulation

Spray bars

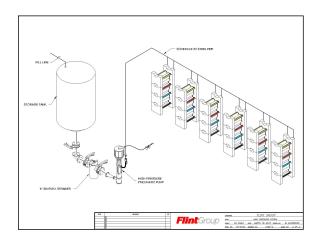


Figure 6: High Pressure Ink Circulation

INKING

Pre-Press

- → Ink delivery
 - → Air

Press

00000000000

- → Debris
- → Filtration
- → Ink piping
 - → Ink flow
 - → Circulating and dead-end system
 - → Ink train starvation
 - → Temperature
- → Ink input
 - → Open fountain
 - → Ink drip in between fountain roller and blade
 - → Ink is backing off roller
 - → Water in ink fountain: ink/damp interaction
 - → Rail
 - → Mechanical pack
 - Digital pack

- → Rail/fountain roller
 - → Full speed ink input
 - → Slow ink input
- → Ink train length
 - → Short train
 - → Ink/water balance
 - → Normal length
- → Driven drums
 - → All driven
 - → Some are not driven
 - → Ink/water balance

DIFFERENTIAL SURFACE SPEED

- → Ink train roller slip
 - → Ink/water balance
 - → Toning
 - → Water build-up in train
- → Dampener train slip
 - → May be okay, but NOT on plate
- → Ink form slips to plate
 - → Ink/water balance
 - → Plate wear
- → Plate Thickness
 - → Ink/water balance
 - → Toning
- → Blanket height
- → Roller diameter and durameter

- → Ink train dampening
- → Direct to plate dampening
- → Combination of both
 - → Ink/water balance
 - → Curve setting

Figure 7: Kershaw Printed Results

- → Brush
- → Spray bars

PRESS SEQUENCES START-UP

- → RTP Type
 - → Static helts
 - → Constant tension
 - → Soft tension capability
- → Start-up sequence
 - → Press speed trigger
 - → Dampening system start, then forms on (Direct to Plate)
 - → Auto-flood start
 - → Ink forms on, then ink system start

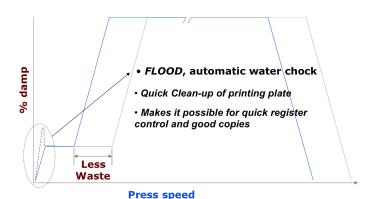


Figure 8: Start Up Flood

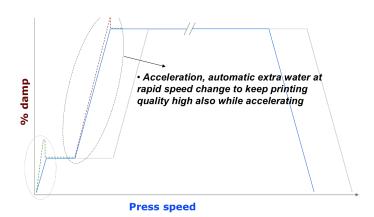


Figure 9: Acceleration Damp Increase

PRESS SEQUENCES, CONT.

Shut Down:

- → Normal stop: end of run or plate change
 - → Press speed trigger
 - → Ink system off at trigger
 - → Ink forms stay on for a few seconds to remove excess ink
 - → Dampening system and forms off a few seconds later.
- → Emergency stop or red button stop
 - → Impression stays on
- → Web break
 - → Impression goes off

Objective of optimization:

- → Even solids
- → Distinct contrast
- → Consistent web handling
- → Maximum durability

Make sure to disclose:

- → What you are printing
- → What ink you are using
- → What paper you are using
- → Pack or no pack guage

Yields:

- → Controlled registration and release
- → Stabilized web control
- → Maximized plate life
- → Consistent print pressure
- → Increased blanket life

CORRECT BLANKET GAUGE, CONT.

Yields:

- → Optimized transfer
- → Controlled dot structure

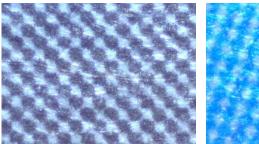


Figure 10: 50% black - 0.003" Under Gauge Blankets

Figure 11: 50% Cyan - 0.003" Under Gauge Blankets

PROPER MOUNTING AND TORQUING

Proper technique will yield:

- → Intended function of designed layers
- → Proper conformation to the cylinder
- → Protection of critical components of the blanket by controlling compression

Figure 13: 4 Ply Compressed

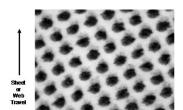


Figure 14: Doubling -Circumferential Movement

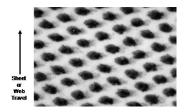


Figure 15: Slurring - Lateral Movement

PROPER MOUNTING AND TORQUING, CONT.

Proper technique will yield:

→ Reduced blanket gapping or "hour glassing"

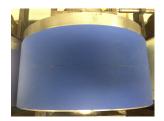


Figure 16: Blanket Not Gapped -Correct Torque

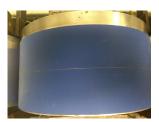


Figure 17: Blanket Gapped - Over Torque

Proper technique will yield:

- → Improved smash resistance
- → Improved web handling
- → Improved print quality
- → Improved register

PROPER MOUNTING AND TORQUING, CONT.

Proper technique will yield:

- → Reduced potential for cracking/breaking at the gap
- → Reduced potential for bar pulls

Figure 18: Blanket/Bar not properly installed. Blanket should seat all the way to the back of the bar

PROPER MOUNTING AND TORQUING, CONT.

Proper technique will yield:

→ Increased potential of printing to the gap

THE WELL DESIGNED PROGRAM

An attentive and effective maintenance program includes:

- → Proper mounting procedure for establishing optimum blanket torque:
 - 1. Install blanket on cylinder so that it seats against cylinder body but has minimal tension
 - 2. Mark two lines, approximately 1" long, exactly 5" apart, in the across direction on the blanket face, approximately 180 degrees opposite the cylinder gap in the around direction.
 - 3. Check thickness of blanket with twin pin gage at or near marks
 - 4. Tension blanket to achieve from 1.25% to 1.75% stretch. (5" mark would measure 5 1/16" to 5 3/32")
 - 5. Rotate cylinder, with impression on (plate also has to be installed) for several revolutions
 - 6. Re-tension blanket to tension established in step 4
 - Blanket gauge at gap should be less than .001"

A clean blanket:

- → Is an absolute necessity for optimized print quality
- → Reduces ink and paper piling and its associated deformation and abrasion of the blanket surface
- → Has all deposits removed before printing resumes

Avoid:

- → Dried ink on the edges that will lead to delamination of the surface
- → Incompatible wash that can swell the blanket, causing release, register, and delamination
- → Improperly adjusted auto washers that can damage the blanket surface
- → Remove excess BW to prevent blanket swell

PRESSROOM CHECKLIST

Pre-Press

How to Print High Quality Offset - The Short List, Cont.

- Adopt and maintain preventative maintenance program
- → Maintain press manufacturers specifications

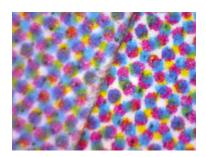


Figure 20: Grey bar before reducing ink and water on left, after reducing on right

PRESSROOM CHECKLIST, CONT.

How to Print High Quality Offset - The Short List, Cont.

→ Verify correct cylinder settings B to B, B to I, and B to P

Figure 21: Bearer Setting Incorrect

Figure 22: Corrected Bearer Setting

In order to maximize production:

- → Maintain blanket log: installation, imp count, removal date, and removal reason
- → Store blankets in subdued light and clean environment
- → Clean blankets of ink and paper piling daily
- → Correctly set blanket washers
- → Minimize edge saturation with blanket wash
- → Identify loose blankets
- → Find and remove damaged blankets
- → Track blanket surface condition
- → Avoid excessive temperatures

ROUTINE CHECKLIST, CONT.

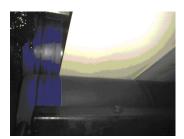


Figure 23: Image of Print and Non-Image

Figure 24: IR Scan of Print and Non-Image

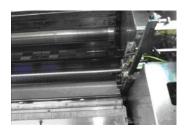


Figure 25: Image of Press Roller

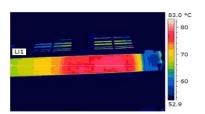


Figure 26: IR Scan of Press Roller

- → Blanket surface shows signs of glazing
- → Blanket surface shows signs of cuts/smashes
- → Web becomes unmanageable under normal settings
- → Ink water balance is difficult to achieve and maintain
- → Loss of print or degradation of print quality

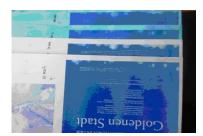


Figure 27: Loss of Print

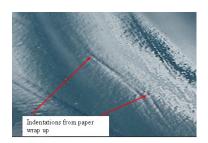


Figure 28: Blanket Face Fracture

Figure 29: Blanket Ink Piling

Figure 30: Plate Edge Cutting

→ QA incoming chemistry

- → pH/Conductivity at specified dilution
- → Concentrate density with a hydrometer
- → Concentrate clarity
- → Monitoring
 - → pH
 - → Conductivity: what is the ideal number, influencing factors
 - → Temperature what should the temperature be?
 - → Dosage with conductivity curves

HYDROMETER READ AT BOTTOM OF MENISCUS READING: 22.5

- → Set mixer dynamic pressure to spec
 - → It ensures spray pattern consistency, correct overlap and atomization
- → Replace filters

SYSTEM MAINTENANCE

- → Checking for biological growth
 - → Hach paddle tests
 - → Hand held RLU test



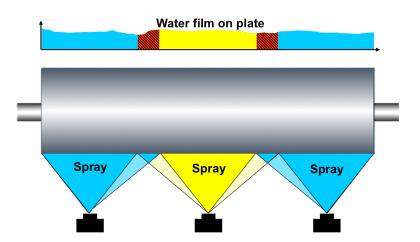
Figure 32: Hand held RLU test

- → Cleaners
 - → Peroxide vs. bleach(oxidizers)
 - → Shocking the system with biocides
 - → Custom cleaners
- → Scheduled cleaning time frames

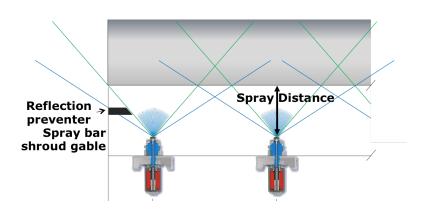
FOUNTAIN SOLUTION SELECTION

- → Press Type
- → Dampening system
- → Water type
- → Plates/Ink
- → Paper types
- → Environmental factors
- → Approvals(FOGRA)

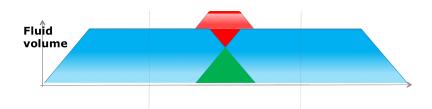
- → Off-press volumetric testing
 - → Valve performance
 - → Distribution testing
 - → Nozzle performance
 - → Distance setting: overlaps
- → On-press mechanical adjustment
 - → Bar distance
 - → Dry bands
 - → Wet bands
 - → Bar angle
 - → Spraying at roller crown
 - → Spraying into roller nip



OFF-PRESS TESTING



PRESS SEQUENCES - START-UP FLOOD



NOZZLE, CENTER TO CENTER DISTANCE

CORRECT SPRAY BAR DISTANCE

SYSTEM CONTROL ADJUSTMENTS

- → control method
 - → Variable on-time
 - → Fixed on-time
- → Water Curve
 - → Track press speed
- → Water Curve
 - → Allows the correct water volume at all press speeds
- → Flood
 - → Fast start-ups and low waste
- → Start-up sequencing
 - → Fast start-ups and low waste

ferag...

Thank you to our reception sponsors!

