Executive Education Course
Evaluating Social Programs
10-14 July 2017
Contents

Program 1
Presenters 2
Course Objectives 4
Teaching Assistant Groups 5
Program Theory and Measuring Outcomes
Case Study 1: Encouraging community-based monitoring of healthcare in Uganda 6
Why Randomize?
Case Study 2: Learn to read evaluation 9
How to Randomize
Case Study 3: Extra Teaching Program 16
Addressing Threats to Experimental Integrity
Case Study 4: Technoverse coffee in Rwanda 20
Exercise A: Understanding Random Sampling and the Law of Large Numbers 26
Exercise B: How to do Random Assignment using MS Excel 27
Exercise C: How to do Power Calculations in Optimal Design Software 37
Incorporating Evidence into Decision Making
Case Study 5: Hypothetical case study on education in Zambia 52
Where to Eat in Nairobi 57
Guidelines for Group Presentations 58
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-9:00</td>
<td>Tea and coffee</td>
<td></td>
<td></td>
<td></td>
<td>Project from Start to finish Edward Miguel</td>
</tr>
<tr>
<td>09:00-10:00</td>
<td>Registration</td>
<td></td>
<td></td>
<td></td>
<td>Endline Assessment</td>
</tr>
<tr>
<td>10:00-10:15</td>
<td>Introduction to J-PAL and IPA</td>
<td>Measuring Impact</td>
<td>How to Randomize</td>
<td>Threats and Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asman Suleiman and Laura Poswell</td>
<td>Lorenzo Casaburi</td>
<td>Lorenzo Casaburi</td>
<td>Asman Suleiman</td>
<td></td>
</tr>
<tr>
<td>10:15-10:30</td>
<td>Introduction to Training & Security</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ashleigh Morrell and Janet Nakuti</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>Baseline Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>What is evaluation? Laura Poswell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>Lunch & Connections</td>
<td>Case Study Three: Extra Teacher Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30-13:00</td>
<td>Lunch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-13:30</td>
<td>Lunch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30-14:00</td>
<td>Lunch & Measurement Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00-14:30</td>
<td>Theory of Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>Why Randomize</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:45-15:30</td>
<td>Case Study One: Theory of Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30-16:00</td>
<td>Group work: Theory of Change and Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00-16:30</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30-17:00</td>
<td>Case Study Two: Why Randomize</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00-17:30</td>
<td>Exercise A&B: Randomization Mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-20:00</td>
<td>Braai</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Presenters

Edward Miguel
Edward Miguel is the Oxfam Professor of Environmental and Resource Economics at the University of California at Berkeley. His work focuses on the provision and the impact of public goods to the poor in sub-Saharan Africa, notably in Kenya and Tanzania. He has conducted a randomized evaluation of a deworming program in Kenya and of a nutrition supplement program aimed at pre-primary school children in India.

Lorenzo Casaburi
Lorenzo Casaburi is an Assistant Professor of Development Economics at the University of Zurich. His research in development economics focuses on agricultural markets and state capacity. Lorenzo’s work on agricultural markets has focused on Sub-Saharan Africa, with an emphasis on market structure and firm behavior. Recent papers in this area study the impact of saving constraints on agricultural markets and the design of novel agricultural insurance products for smallholders. His second main area of interest is state capacity, with an emphasis on tax enforcement. Recent work in this area includes a paper on the impact of tax enforcement policies on voting behavior and ongoing collaboration with the Kenya Revenue Authority on projects aimed at reducing evasion of rental income tax and value added tax.

Laura Poswell
Laura Poswell is the Executive Director for J-PAL Africa at SALDRU at the University of Cape Town. Her role involves working with governments and NGOs in Africa to decipher policy lessons about what works and collaborating with researchers and policy makers to conduct randomized evaluations that address policy questions facing African decision-makers. Laura has an M.BusSc. from the University of Cape Town. Her last role with FUEL Trust involved working in close partnership with South Africa’s Department of Basic Education to implement a service delivery enhancement programme with the National School Nutrition Programme. She previously worked as a researcher for the Development Policy Research Unit at the University of Cape Town.

Suleiman Asman
Suleiman Asman manages a portfolio of over 28 projects based in Kenya, spanning agriculture, education, health, water and sanitation, and finance. He joined IPA in 2007 as Senior Evaluation Coordinator, rising to the role of Research Manager in 2012. Suleiman has conducted research with professors from the most prestigious universities in the world and led policy-relevant partnerships with some of IPA Kenya’s seminal studies, including the mobile money, M-Pesa study and the Multiple Use Water Systems study. Asman came to IPA from a research analyst background with numerous research organizations.
Ashleigh Gillwald Morrell
Ashleigh Gillwald Morrell is a Policy Manager at J-PAL Africa. She works with education policymakers to ensure that policy is driven by evidence and that effective education programs are scaled up. Ashleigh’s current work is primarily centred on scaling up Teaching at the Right Level programs in Africa, having supported the Ministry of Education in piloting the initiative in Zambia. Ashleigh is also the J-PAL Africa training lead. Prior to working at J-PAL Ashleigh worked as an Economic Analyst at London Economics and as a Data Analyst at Research ICT Africa. Ashleigh is a recipient of the UK and Commonwealth Office Chevening scholarship for Future Leaders and holds a MSc. in Economics from the London School of Economics.
Course Objectives

This impact evaluation training course is designed for people from a variety of backgrounds: managers and researchers from international development organizations, foundations, governments and non-governmental organizations from around the world, as well as trained economists looking to retool.

The course is a 5-day full-time course. It is important for participants to attend all lectures and group work in order to successfully complete the course and receive their certificates of completion.

Key Questions

The following key questions and concepts will be covered:

- Why and when is a rigorous evaluation of social impact needed?
- The common pitfalls of evaluations, and “why does randomization help?”
- The key components of a good randomized evaluation design
- Alternative techniques for incorporating randomization into project design
- How do you determine the appropriate sample size, measure outcomes, and manage data?
- Guarding against threats that may undermine the integrity of the results

The program will achieve these goals through a diverse set of integrated teaching methods. Expert researchers will provide both theoretical and example-based classes, complemented by workshops where participants can apply key concepts to real world examples. By examining both successful and problematic evaluations, participants will better understand the significance of various specific details of randomized evaluations. Furthermore, the program will offer extensive opportunities to apply these ideas, ensuring that participants will leave with the knowledge, experience, and confidence necessary to engage with research using randomized evaluations.
Teaching Assistant Groups

<table>
<thead>
<tr>
<th>Martin Gitahi</th>
<th>Ashleigh Morrell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philip Kahuho</td>
<td>Ernest Wesley-Otto</td>
</tr>
<tr>
<td>Kiprono Philemon</td>
<td>Annette Mcfarland</td>
</tr>
<tr>
<td>Oladele Akogun</td>
<td>Christiana Gbedemah</td>
</tr>
<tr>
<td>David Guillemois</td>
<td>Oladayo Olaide</td>
</tr>
<tr>
<td>Guillaume Dulac</td>
<td>Emmanuel Manyasa</td>
</tr>
<tr>
<td></td>
<td>Adriana Castillo Castillo</td>
</tr>
<tr>
<td></td>
<td>Samuel Otieno Owino</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>John Mugai</th>
<th>Leah Bridle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph Chege</td>
<td>David Kimani</td>
</tr>
<tr>
<td>Damacrine Masira</td>
<td>Samuel Mburu</td>
</tr>
<tr>
<td>Dave Mukabi</td>
<td>Grace Muinga</td>
</tr>
<tr>
<td>Maryanne Kamande</td>
<td>Sylvester Oikeh</td>
</tr>
<tr>
<td>Sylvia Omollo</td>
<td>Peter Musyoka</td>
</tr>
<tr>
<td>Jonah Tarus</td>
<td>Haleluya Gebru</td>
</tr>
<tr>
<td></td>
<td>Mercy Kamau</td>
</tr>
</tbody>
</table>

Allegra Cockburn

<table>
<thead>
<tr>
<th>Evelyn Oduro, Owusu</th>
<th>Ambika Sharma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynthia Efua Bosumtwi</td>
<td>Jennifer Opare-Kumi</td>
</tr>
<tr>
<td>Zororo Gandah</td>
<td>Bernard Ntim</td>
</tr>
</tbody>
</table>
CASE STUDY 1: ENCOURAGING COMMUNITY-BASED MONITORING OF HEALTHCARE IN UGANDA

Program Theory and Measuring Outcomes

J-PAL thanks the authors for allowing us to use their paper.
KEY VOCABULARY

Hypothesis: a proposed explanation of and for the effects of a given intervention. Hypotheses are intended to be made *ex ante* or prior to the implementation of the intervention.

Indicators: metrics used to quantify and measure specific short-term and long-term effects of a program.

Logical Framework: a management tool used to facilitate the design, execution, and evaluation of an intervention. It involves identifying strategic elements (inputs, outputs, outcomes, and impact) and their causal relationships, indicators, and the assumptions and risks that may influence success or failure.

Theory of Change: describes a strategy or blueprint for achieving a given long-term goal. It identifies the preconditions, pathways, and interventions necessary for an initiative’s success.

HOW CAN HEALTHCARE BE IMPROVED?

Nearly 11 million children under five die each year, many from preventable diseases such as pneumonia, malaria and measles. Though prevention and treatment for such diseases is relatively cheap, health infrastructure in developing countries is often inadequate to deliver the necessary services. Some possible reasons for this include a lack of monitoring of health service provides and that people do not hold them accountable. In addition, poor incentives for public providers to deliver quality services may result in high absenteeism and low-quality patient care. The participation of beneficiaries who are in regular contact with service providers in the monitoring of public service delivery may be a good way to raise quality of care.

Uganda, like many newly independent countries in Africa, had a functioning healthcare system in the early 1960s, but saw a collapse of government services as the country underwent political upheaval. The government has been implementing major infrastructure rehabilitation programs in the public health sector, but health outcomes have not improved substantially – nearly 75% of all deaths are from preventable causes. Children under the age of 5 are particularly vulnerable.

Rural dispensaries are the lowest level of the Ugandan health system and they provide preventive outpatient care, maternity and laboratory services. There are a number of actors who are responsible for supervising the dispensaries, but it is only the officials at the very top who can suspend or dismiss staff who are in charge of the day-to-day running of the facility. Usually staffed by one medical worker, two nurses and three aides, dispensaries provide no incentives for their workers to increase their efforts, as wages and promotions are not closely related to performance. Community members are generally unaware of how many children are dying in their community, and don’t know what level of quality to expect in their health services.

COMMUNITY-BASED MONITORING OF HEALTHCARE RANDOMIZED EVALUATION

In 2004, researchers conducted a randomized evaluation at 50 dispensaries from nine districts in Uganda to see if
community monitoring would improve health worker performance and the impact this might have on health utilization and outcomes.

In the 25 randomly selected treatment villages, local NGOs facilitated meetings between the community and their healthcare providers. After community members of all backgrounds had discussed the status of their health services and the steps providers should take to improve health service provision, they then met with health workers to discuss patient rights and provider responsibilities. The outcome was a shared action plan, or a contract, outlining the agreement between the community and healthcare providers on what needs to be done, how, when and by whom. These meetings were aimed to kick-start the process of community monitoring. Finally, a second set of meetings was held 6 months later to review progress and suggest improvements. More than 150 participants attended a typical village meeting.

THEORY OF CHANGE

To understand how the program is intended to have an impact, it is necessary to draw up the Theory of Change from beginning to end.

Discussion Topic 1

Needs assessment and chain of causality

1. What is the need which this intervention is hoping to answer?
2. Using the same framework shown below in figure 2, lay out the chain of causality. If you think there could be multiple chains, feel free to draw up more than one.

Discussion Topic 2

Assumptions and long-term outcomes

1. What are the assumptions which underlie this chain of causality?
2. Are there any long-term outcomes which you think might be interesting to study

MAPPING FROM TOC TO INDICATORS

Discussion Topic 3

Measuring each step in the chain

1. List several indicators you would use to measure each of ‘Output’, ‘Intermediate Outcomes’ and ‘Primary Outcomes’ in your ToC.
2. What kinds of instruments would you use to collect data on these indicators? Think carefully about issues such as cost and time effectiveness, as well as what sort of instrument will capture that information most accurately.
CASE STUDY 2: LEARN TO READ
EVALUATION

Why Randomize?

This case study is based on “Pitfalls of Participatory Programs: Evidence from a Randomized Evaluation in India,” by Abhijit Banerjee (MIT), Rukmini Banerjee (Pratham), Esther Duflo (MIT), Rachel Glennerster (J-PAL), and Stuti Khemani (The World Bank)

J-PAL thanks the authors for allowing us to use their paper
CASE STUDY 2 • WHY RANDOMIZE •

KEY VOCABULARY

Counterfactual: what would have happened to the participants in a program had they not received the intervention. The counterfactual cannot be observed from the treatment group; it can only be inferred from the comparison group.

Comparison Group: in an experimental design, a randomly assigned group from the same population that does not receive the intervention, but is the subject of evaluation. Participants in the comparison group are used as a standard for comparison against the treated subjects in order to validate the results of the intervention.

Program Impact: estimated by measuring the difference in outcomes between comparison and treatment groups. The true impact of the program is the difference in outcomes between the treatment group and its counterfactual.

Baseline: data describing the characteristics of participants measured across both treatment and comparison groups prior to implementation of intervention.

Endline: data describing the characteristics of participants measured across both treatment and comparison groups after implementation of intervention.

Selection Bias: statistical bias between comparison and treatment groups in which individuals in one group are systematically different from those in the other. These can occur when the treatment and comparison groups are chosen in a non-random fashion so that they differ from each other by one or more factors that may affect the outcome of the study.

Omitted Variable Bias: statistical bias that occurs when certain variables/characteristics (often unobservable), which affect the measured outcome, are omitted from a regression analysis. Because they are not included as controls in the regression, one incorrectly attributes the measured impact solely to the program.

INTRODUCTION

In a large-scale survey conducted in 2004, Pratham discovered that only 39% of children (aged 7-14) in rural Uttar Pradesh could read and understand a simple story, and nearly 15% could not recognize even a letter.

During this period, Pratham was developing the “Learn-to-Read” (L2R) module of its Read India campaign. L2R included a unique pedagogy teaching basic literacy skills, combined with a grassroots organizing effort to recruit volunteers willing to teach.

This program allowed the community to get involved in children’s education more directly through village meetings where Pratham staff shared information on the status of literacy in the village and the rights of children to education. In these meetings, Pratham identified community members who were willing to teach. Volunteers attended a training session on the pedagogy, after which they could hold after-school reading classes for children, using materials designed and provided by Pratham. Pratham staff paid occasional visits to these camps to ensure that the classes were being held and to provide additional training as necessary.

Did this program work? How would you measure the impact?
DID THE LEARN TO READ PROJECT WORK?

Did Pratham’s “Learn to Read” program work? What is required in order for us to measure whether a program worked, or whether it had impact?

In general, to ask if a program works is to ask if the program achieves its goal of changing certain outcomes for its participants, and ensure that those changes are not caused by some other factors or events happening at the same time. To show that the program causes the observed changes, we need to simultaneously show that if the program had not been implemented, the observed changes would not have occurred (or would be different). But how do we know what would have happened? If the program happened, it happened. Measuring what would have happened in the absence of the program requires entering an imaginary world in which the program was never given to these participants. The outcomes of the same participants in this imaginary world are referred to as the counterfactual. Since we cannot observe the true counterfactual, the best we can do is to estimate it by mimicking it.

The key challenge of program impact evaluation is constructing or mimicking the counterfactual. We typically do this by selecting a group of people that resemble the participants as much as possible but who did not participate in the program. This group is called the comparison group. Because we want to be able to say that it was the program and not some other factor that caused the changes in outcomes, it is important that the only difference between the comparison group and the participants is that the comparison group did not participate in the program. We then estimate “impact” as the difference observed at the end of the program between the outcomes of the comparison group and the outcomes of the program participants.

The impact estimate is only as accurate as the comparison group is successful at mimicking the counterfactual. If the comparison group poorly represents the counterfactual, the impact is (in most circumstances) poorly estimated. Therefore the method used to select the comparison group is a key decision in the design of any impact evaluation.

That brings us back to our questions: Did the Learn to Read project work? What was its impact on children’s reading levels?

In our case, the intention of the program is to “improve children’s reading levels” and the reading level is the outcome measure. So, when we ask if the Learn to Read project worked, we are asking if it improved children’s reading levels. The impact is the difference between reading levels after the children have taken the reading classes and what their reading level would have been if the reading classes had never existed.

For reference, Reading Level is an indicator variable that takes value 0 if the child can read nothing, 1 if he knows the alphabet, 2 if he can recognize words, 3 if he can read a paragraph, and 4 if he can read a full story.

What comparison groups can we use? The following experts illustrate different methods of evaluating impact. (Refer to the table on the last page of the case study for a list of different evaluation methods).

ESTIMATING THE IMPACT OF THE LEARN TO READ PROJECT

METHOD 1:

News Release: Read India helps children Learn to Read.

Pratham celebrates the success of its “Learn to Read” program—part of the Read India Initiative. It has made significant progress in its goal of improving children’s literacy rates through better learning materials, pedagogical methods, and most importantly, committed volunteers. The achievement of the “Learn to Read” (L2R) program demonstrates that a revised curriculum, galvanized by community mobilization, can produce significant gains. Massive government expenditures in mid-day meals and school construction have failed to achieve similar results. In less than a year, the reading levels of children who enrolled in the L2R camps improved considerably.
Just before the program started, half these children could not recognize Hindi words—many nothing at all. But after spending just a few months in Pratham reading classes, more than half improved by at least one reading level, with a significant number capable of recognizing words and several able to read full paragraphs and stories! On average, the literacy measure of these students improved by nearly one full reading level during this period.

Discussion Topic 1

Identifying evaluation

1. What type of evaluation does this news release imply?
2. What represents the counterfactual?
3. What are the problems with this type of evaluation?

METHOD 2:

Opinion: The “Read India” project not up to the mark

Pratham has raised millions of dollars, expanding rapidly to cover all of India with its so-called “Learn-to-Read” program, but do its students actually learn to read? Recent evidence suggests otherwise. A team of evaluators from Education for All found that children who took the reading classes ended up with literacy levels significantly below those of their village counterparts. After one year of Pratham reading classes, Pratham students could only recognize words whereas those who steered clear of Pratham programs were able to read full paragraphs.

Notes: Reading Level is an indicator variable that takes value 0 if the child can read nothing, 1 if he knows the alphabet, 2 if he can recognize words, 3 if he can read a paragraph and 4 if he can read a full story.

If you have a dime to spare, and want to contribute to the education of India’s illiterate children, you may think twice before throwing it into the fountain of Pratham’s promises.

Discussion Topic 2

Identifying evaluation

1. What type of evaluation does this opinion piece imply?
2. What represents the counterfactual?
3. What are the problems with this type of evaluation?
METHOD 3:
Letter to the Editor: EFA should consider Evaluating Fairly and Accurately

There have been several unfair reports in the press concerning programs implemented by the NGO Pratham. A recent article by a former Education for All bureaucrat claims that Pratham is actually hurting the children it recruits into its ‘Learn-to-Read’ camps. However, the EFA analysis uses the wrong metric to measure impact. It compares the reading levels of Pratham students with other children in the village—not taking into account the fact that Pratham targets those whose literacy levels are particularly poor at the beginning. If Pratham simply recruited the most literate children into their programs, and compared them to their poorer counterparts, they could claim success without conducting a single class. But Pratham does not do this. And realistically, Pratham does not expect its illiterate children to overtake the stronger students in the village. It simply tries to initiate improvement over the current state. Therefore the metric should be improvement in reading levels—not the final level. When we repeated EFA’s analysis using the more-appropriate outcome measure, the Pratham kids improved at twice the rate of the non-Pratham kids (0.6 reading level increase compared to 0.3). This difference is statistically very significant.

Had the EFA evaluators thought to look at the more appropriate outcome, they would recognize the incredible success of Read India. Perhaps they should enroll in some Pratham classes themselves.

Discussion Topic 3
Identifying evaluation
1. What type of evaluation does this letter imply?
2. What represents the counterfactual?
3. What are the problems with this type of evaluation?

METHOD 4:
The numbers don’t lie, unless your statisticians are asleep

Pratham celebrates victory, opponents cry foul. A closer look shows that, as usual, the truth is somewhere in between.

There has been a war in the press between Pratham’s supporters and detractors. Pratham and its advocates assert that the Read India campaign has resulted in large increases in child literacy. Several detractors claim that Pratham programs, by pulling attention away from the schools, are in fact causing significant harm to the students. Unfortunately, this battle is being waged using instruments of analysis that are seriously flawed. The ultimate victim is the public who is looking for an answer to the question: is Pratham helping its intended beneficiaries?

This report uses sophisticated statistical methods to measure the true impact of Pratham programs. We were concerned about other variables confounding previous results. We therefore conducted a survey in these villages to collect information on child age, grade-level, and parents’ education level, and used those to predict child test scores.

Looking at Table 1, we find some positive results, some negative results and some “no-results”, depending on which variables we control for. The results from column (1) suggest that Pratham’s program hurt the children. There is a negative correlation between receiving Pratham classes and final reading outcomes (-0.68). Column (3), which evaluates improvement, suggests impressive results (0.24). But looking at child outcomes (either level or improvement) controlling for initial reading levels, age, gender, standard and parent’s education level – all determinants of child reading levels – we found no impact of Pratham programs.

Therefore, controlling for the right variables, we have discovered that on one hand, Pratham has not caused the harm claimed by certain opponents, but on the other hand, it has not helped children learn. Pratham has therefore
failed in its effort to convince us that it can spend donor money effectively.

Discussion Topic 4

Identifying evaluation

1. What type of evaluation does this report imply?

2. What represents the counterfactual?

3. What are the problems with this type of evaluation?

Table 1: Reading Outcomes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level (1)</th>
<th>Improvement (2)</th>
<th>Improvement (3)</th>
<th>Improvement (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Classes</td>
<td>-0.68**</td>
<td>0.04</td>
<td>0.24**</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(0.0829)</td>
<td>(0.1031)</td>
<td>(0.0628)</td>
<td>(0.1081)</td>
</tr>
<tr>
<td>Previous Reading Level</td>
<td></td>
<td></td>
<td>0.71**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0215)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.00</td>
<td></td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0182)</td>
<td></td>
<td>(0.0194)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>-0.01</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0469)</td>
<td></td>
<td>(0.0514)</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0.02</td>
<td></td>
<td>-0.08**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0174)</td>
<td></td>
<td>(0.0171)</td>
<td></td>
</tr>
<tr>
<td>Parents Literate</td>
<td>0.04</td>
<td></td>
<td>0.13**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0457)</td>
<td></td>
<td>(0.0506)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>2.82</td>
<td>0.36</td>
<td>0.37</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>(0.0239)</td>
<td>(0.2648)</td>
<td>(0.0157)</td>
<td>(0.3293)</td>
</tr>
</tbody>
</table>

Notes: The omitted category for school type is 'Did not go to school.' Reading Level is an indicator variable that takes value 0 if the child can read nothing, 1 if he knows the alphabet, 2 if he can recognize words, 3 if he can read a paragraph and 4 if he can read a full story.
<table>
<thead>
<tr>
<th>Methodology</th>
<th>Description</th>
<th>Who is in the comparison group?</th>
<th>Required Assumptions</th>
<th>Required Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Post</td>
<td>Measure how program participants improved (or changed) over time.</td>
<td>Program participants themselves—before participating in the program.</td>
<td>The program was the only factor influencing any changes in the measured outcome over time.</td>
<td>Before and after data for program participants.</td>
</tr>
<tr>
<td>Simple Difference of Means</td>
<td>Measure difference between program participants and non-participants after the program is completed.</td>
<td>Individuals who didn’t participate in the program (for any reason), but for whom data were collected both before and after the program.</td>
<td>Non-participants are identical to participants except for program participation, and were equally likely to enter program before it started.</td>
<td>After data for program participants and non-participants.</td>
</tr>
<tr>
<td>Differences in Differences</td>
<td>Measure improvement (change) over time of program participants relative to the improvement (change) of non-participants.</td>
<td>Individuals who didn’t participate in the program (for any reason), but for whom data were collected both before and after the program.</td>
<td>If the program didn’t exist, the two groups would have had identical trajectories over this period.</td>
<td>Before and after data for both participants and non-participants.</td>
</tr>
<tr>
<td>Multivariate Regression</td>
<td>Individuals who received treatment are compared with those who did not, and other factors that might explain differences in the outcomes are “controlled” for.</td>
<td>Individuals who didn’t participate in the program (for any reason), but for whom data were collected both before and after the program. In this case data is not comprised of just indicators of outcomes, but other “explanatory” variables as well.</td>
<td>The factors that were excluded (because they are unobservable and/or have been not been measured) do not bias results because they are either uncorrelated with the outcome or do not differ between participants and non-participants.</td>
<td>Outcomes as well as “control variables” for both participants and non-participants.</td>
</tr>
<tr>
<td>Statistical Matching</td>
<td>Individuals in control group are compared to similar individuals in experimental group.</td>
<td>Exact matching: For each participant, at least one non-participant who is identical on selected characteristics. Propensity score matching: non-participants who have a mix of characteristics which predict that they would be as likely to participate as participants.</td>
<td>The factors that were excluded (because they are unobservable and/or have been not been measured) do not bias results because they are either uncorrelated with the outcome or do not differ between participants and non-participants.</td>
<td>Outcomes as well as “variables for matching” for both participants and non-participants.</td>
</tr>
<tr>
<td>Regression Discontinuity Design</td>
<td>Individuals are ranked based on specific, measureable criteria. There is some cutoff that determines whether an individual is eligible to participate. Participants are then compared to non-participants and the eligibility criterion is controlled for.</td>
<td>Individuals who are close to the cutoff, but fall on the “wrong” side of that cutoff, and therefore do not get the program.</td>
<td>After controlling for the criteria (and other measures of choice), the remaining differences between individuals directly below and directly above the cut-off score are not statistically significant and will not bias the results. A necessary but sufficient requirement for this to hold is that the cut-off criteria are strictly adhered to.</td>
<td>Outcomes as well as measures on criteria (and any other controls).</td>
</tr>
<tr>
<td>Instrumental Variables</td>
<td>Participation can be predicted by an incidental (almost random) factor, or "instrumental" variable, that is uncorrelated with the outcome, other than the fact that it predicts participation (and participation affects the outcome).</td>
<td>Individuals who, because of this close to random factor, are predicted not to participate and (possibly as a result) did not participate.</td>
<td>If it weren’t for the instrumental variable’s ability to predict participation, this “instrument” would otherwise have no effect on or be uncorrelated with the outcome.</td>
<td>Outcomes, the “instrument,” and other control variables.</td>
</tr>
<tr>
<td>Randomized Evaluation</td>
<td>Experimental method for measuring a causal relationship between two variables.</td>
<td>Participants are randomly assigned to the control groups.</td>
<td>Randomization "worked." That is, the two groups are statistically identical (on observed and unobserved factors).</td>
<td>Outcome data for control and experimental groups. Control variables can help absorb variance and improve "power".</td>
</tr>
</tbody>
</table>
CASE STUDY 3: EXTRA TEACHER PROGRAM

How to Randomize

This case study is based on the paper “Peer Effects and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya,” by Esther Duflo (MIT), Pascaline Dupas (UCLA), and Michael Kremer (Harvard)

J-PAL thanks the authors for allowing us to use their paper.
INTRODUCTION

Confronted with overcrowded schools and a shortage of teachers, in 2005 the NGO International Child Support Africa (ICS) offered to help the school system of Western Kenya by introducing contract teachers in 120 primary schools. Under its two-year program, ICS provided funds to these schools to hire one extra teacher per school. In contrast to the civil servants hired by the Ministry of Education, contract teachers are hired locally by school committees. ICS expected this program to improve student learning by, among other things, decreasing class size and using teachers who are more directly accountable to the communities they serve. However, contract teachers tend to have less training and receive a lower monthly salary than their civil servant counterparts. Thus there was concern about whether these teachers were sufficiently motivated, given their compensation, or qualified, given their credentials.

What experimental designs could test the impact of this intervention on educational achievement? Which of these changes in the school landscape is primarily responsible for improved student performance?
OVERCROWDED SCHOOLS

Like many other developing countries, Kenya has recently made rapid progress toward the Millennium Development Goal of universal primary education. Largely due to the elimination of school fees in 2003, primary school enrollment rose nearly 30 percent, from 5.9 million to 7.6 million between 2002 and 2005.

Without accompanying government funding, however, this progress has created its own set of new challenges in Kenya:

1. **Large class sizes:** Due to budget constraints, the rise in primary school enrollment has not been matched by proportional increases in the number of teachers. (Teacher salaries already account for the largest component of educational spending.) The result has been very large class sizes, particularly in lower grades. In a sample of schools in Western Kenya, for example, the average first grade class in 2005 had 83 students. This is concerning because it is believed that small classes are most important for the youngest students, who are still acclimating to the school environment. The Kenyan National Union of Teachers estimates that the country needs an additional 60,000 primary school teachers in addition to the existing 175,000 in order to reach all primary students and decrease class sizes.

2. **Teacher absenteeism:** Further exacerbating the problem of high pupil-teacher ratios, teacher absenteeism remains high, reaching nearly 20 percent in some areas of Kenya.

 There are typically no substitutes for absent teachers, so students simply mill around, go home, or join another class, often in a different grade. Small schools, which are prevalent in rural areas of developing countries, may be closed entirely as a result of teacher absence. Families have to consider whether school will even be open when deciding whether or not to send their children to school. An obvious result is low student attendance—even on days when the school is open.

3. **Heterogeneous classes:** Classes in Kenya are also very heterogeneous, with students varying widely in terms of school preparedness and support from home.

 Grouping students into classes sorted by ability (known as tracking, or streaming) is controversial among academics and policymakers. On one hand, if teachers find it easier to teach a homogeneous group of students, tracking could improve school effectiveness and test scores. Many argue, on the other hand, that if students learn in part from their peers, tracking could disadvantage low-achieving students while benefiting high-achieving students, thereby exacerbating inequality.

4. **Scarce school materials:** Because of the high costs of educational inputs and the rising number of students, educational resources other than the teacher are stretched, and in some cases up to four students must share one textbook. Additionally, an already overburdened infrastructure deteriorates faster when forced to serve more children.

5. **Low completion rates:** As a result of these factors, completion rates are very low in Kenya, with only 45.1 percent of boys and 43.3 percent of girls completing the first grade.

All in all, these issues pose a new challenge to the community: how to ensure at least the minimum quality of education given Kenya’s budget constraints.

WHAT ARE CONTRACT TEACHERS?

Governments in several developing countries have responded to similar challenges by staffing unfilled teaching positions with locally hired contract teachers who are not civil service employees. There are four main characteristics of contract teachers: they are (1) appointed on annual renewable contracts, with no guarantee of renewed employment (unlike regular civil service teachers); (2) often less qualified than regular teachers and much less likely to have a formal teacher training certificate or degree; (3) paid lower salaries than those of regular teachers (typically less than a fifth of the salaries paid to regular teachers); and (4) more likely to be from the local area where the school is located.

ARE CONTRACT TEACHERS EFFECTIVE?

The increasing use of contract teachers has been one of the most significant policy innovations in providing primary education in developing countries, but it has also been highly controversial. Supporters say that using contract teachers is an efficient way of expanding education access and quality to a large number of first-generation learners. Knowing that the school committee’s decision of whether or not to rehire them the following year may hinge on performance, contract
teachers are motivated to try harder than their tenured government counterparts. Contract teachers are also often more similar to their students geographically, culturally, and socioeconomically.

Opponents argue that using underqualified and untrained teachers may staff classrooms, but will not produce learning outcomes. Furthermore, the use of contract teachers de-professionalizes teaching, reduces the prestige of the entire profession, and reduces motivation of all teachers. Even if it helps in the short term, it may hurt efforts to recruit highly qualified teachers in the future.

While the use of contract teachers has generated much controversy, there is very little rigorous evidence regarding the effectiveness of contract teachers in improving student learning outcomes.

THE EXTRA TEACHER PROGRAM RANDOMIZED EVALUATION

In January 2005, ICS Africa initiated a two-year program to examine the effect of contract teachers on education in Kenya. Under the program, ICS gave funds to 120 local school committees to hire one extra contract teacher to teach an additional first grade class. The purpose of this intervention was to address three challenges: class size, teacher accountability, and heterogeneity of ability. The evaluation was designed to measure the impact of class-size reductions, the relative effectiveness of contract teachers, and how tracking by ability would impact both low- and high-achieving students.

ADDRESSING MULTIPLE RESEARCH QUESTIONS THROUGH EXPERIMENTAL DESIGN

Different randomization strategies may be used to answer different questions. What strategies could be used to evaluate the following questions? How would you design the study? Who would be in the treatment and control groups, and how would they be randomly assigned to these groups?

Discussion Topic 1
Testing the effectiveness of contract teachers

1. What is the relative effectiveness of contract teachers versus regular government teachers?

Discussion Topic 2
Looking at more general approaches to improving education

1. What is the effect of grouping students by ability on student performance?
2. What is the effect of smaller class sizes on student performance?

Discussion Topic 3
Addressing all questions with a single evaluation

1. Could a single evaluation explore all of these issues at once?
2. What randomization strategy could do so?
CASE STUDY 4: TECHNO SERVE COFFEE IN RWANDA

Addressing threats to experimental integrity

This case study is based on a current study by Esther Duflo and Tavneet Suri.

J-PAL thanks the authors for allowing us to use their project.
INTRODUCTION

In 2010, the TechnoServe (TNS) Coffee Initiative partnered with J-PAL researchers to conduct a randomized evaluation on their coffee agronomy-training program in Nyarubaka sector in southern Rwanda. TechnoServe carried out their regular recruitment sign-up processes across all 27 villages in the sector and registered 1600 coffee farmers who were interested in attending the monthly training modules. The study design for the evaluation then required that this pool of farmers be split into treatment and control groups, meaning those who would participate in the training, and those who wouldn’t (for now—they would be trained in later phases). The trainings in Nyarubaka included 800 coffee farmers, randomly selected from the pool of 1600.

Randomization ensures that the treatment and comparison groups are equivalent at the beginning, mitigating concern for selection bias. But it cannot ensure that they remain comparable until the end of the program. Nor can it ensure that people comply with the treatment, or even the non-treatment, that they were assigned. Life also goes on after the randomization: other events besides the program happen between initial randomization and the endline data collection. These events can reintroduce selection bias; they diminish the validity of the impact estimates and are threats to the integrity of the experiment. How can common threats to experimental integrity be managed?

KEY VOCABULARY

Phase-in Design: a study design in which groups are individually phased into treatment over a period of time; groups which are scheduled to receive treatment later act as the comparison groups in earlier rounds.

Equivalence: groups are identical on all baseline characteristics, both observable and unobservable. Ensured by randomization.

Attrition: the process of individuals dropping out of either the treatment or comparison group over the course of the study.

Attrition Bias: statistical bias which occurs when individuals systematically drop out of either the treatment or the comparison group for reasons related to the treatment.

Partial Compliance: individuals do not “comply” with their assignment (to treatment or comparison). Also termed “diffusion” or “contamination.”

Intention to Treat: the measured impact of a program comparing study (treatment versus control) groups, regardless of whether they actually received the treatment.

Externality: an indirect cost or benefit incurred by individuals who did not directly receive the treatment. Also termed “spillover.”
EVALUATION DESIGN — THE EXPERIMENT AS PLANNED

As previously mentioned, the agronomy training evaluation consisted of 1600 farmers, half of which attended monthly training sessions, while the other half did not.

In addition, there was a census done of the entire sector to show us which households were coffee farmers and which ones were not. The census showed that there were 5400 households in Nyarubaka - 2400 non-coffee farming households and 3000 coffee farming households (1600 of which were already in our sample).

Each month a Technoserve farmer trainer would gather the farmers assigned to his/her group and conduct a training module on farming practices (e.g. weeding, pruning, bookkeeping, etc). The farmers were taught the best practices by using a practice plot so they could see and do exactly what the instructor was explaining.

To think about:

How can we be certain that the control group farmers did not attend the training too? What can be done to reduce this risk?

Since we have a census for Nyarubaka, how might this be helpful in at least controlling for or documenting any spillovers? (Think about what can be done at the trainings themselves.)

What type of data might you need/want to try to control for any spillovers in this case?

What were other forms or opportunities for agronomy training in the area?

THREATS TO INTEGRITY OF THE PLANNED EXPERIMENT

Discussion Topic 1

Threats to experimental integrity

Randomization ensures that the groups are equivalent, and therefore comparable, at the beginning of the program. The impact is then estimated as the difference between the average outcome of the treatment group and the average outcome of the comparison group, both at the end of the program. To be able to say that the program caused the impact, you need to be able to say that the program was the only difference between the treatment and comparison groups over the course of the evaluation.

1. What does it mean to say that the groups are equivalent at the start of the program?
2. Can you check if the groups are equivalent at the beginning of the program? How?
3. Other than the program’s direct and indirect impacts, what can happen over the course of the evaluation (after conducting the random assignment) to make the groups non-equivalent?
4. How does non-equivalence at the end threaten the integrity of the experiment?
5. In the Technoserve agronomy training example, why is it useful to randomly select from the farmers who signed up for the Technoserve training program, rather than amongst all the coffee farmers in the sector?

MANAGING ATTRITION—WHEN THE GROUPS DO NOT REMAIN EQUIVALENT

Attrition is when people join or drop out of the sample—both treatment and comparison groups—over the course of the experiment. One common example in clinical trials is when people die; so common indeed that attrition is sometimes called experimental mortality.

Discussion Topic 2

Managing Attrition

You are looking at how much farmers adopt the recommendations and techniques from the agronomy trainings. Using a stylized example, let’s divide adoption of the techniques as follows:

- Full adoption = score of 2
- Partial adoption = score of 1
No adoption = score of 0

Let’s assume that there are 1800 farmers: 900 treatment farmers who receive the training and 900 comparison farmers who do not receive the training. After you randomize and collect some baseline data, you determine that the treatment and comparison groups are equivalent, meaning farmers from each of the three categories are equally represented in both groups.

Suppose protocol compliance is 100 percent: all farmers who are in the treatment go to the training and none of the farmers in the comparison attend the training. Let’s assume that there was a drought during this period, and those who adopted best-practices managed to protect their crops against damage. However, the farmers who have adoption level 0 see most of their crops perish, and members of the household enter the migrant labor market to generate additional income.

The number of farmers in each treatment group, and each adoption category is shown for both the pre-adoption and post-adoption.

<table>
<thead>
<tr>
<th>Adoption Level</th>
<th>Pre-adoption</th>
<th>Post-adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T C</td>
<td>T C</td>
</tr>
<tr>
<td>0</td>
<td>300 300</td>
<td>0 Dropped out</td>
</tr>
<tr>
<td>1</td>
<td>300 300</td>
<td>0 300</td>
</tr>
<tr>
<td>2</td>
<td>300 300</td>
<td>900 300</td>
</tr>
<tr>
<td>Total farmers in sample</td>
<td>900 900</td>
<td>900 600</td>
</tr>
</tbody>
</table>

1. At program end, what is the average adoption for the treatment group?
 a. At program end, what is the average adoption for the comparison group?
 b. What is the difference?

2. Besides level of adoption, the Technoserve agronomy training evaluation also looked at outcome measures such as yields and farm labor. In the Technoserve agronomy evaluation, identify some other causes for attrition in the Treatment and the Control groups? What can be done to mitigate these?
 a. Would differential attrition (i.e., differences in drop-outs between treatment and comparison groups) bias either of these outcomes? How?
 b. Would the impacts on these final outcome measures be underestimated or overestimated?

3. You may know of other research designs to measure impact, such as the non-experimental or quasi-experimental methodologies (e.g., Pre-post difference-in-difference, regression discontinuity, instrumental variables (IV), etc)
 a. Is the threat of attrition unique to randomized evaluations?

MANAGING PARTIAL COMPLIANCE—WHEN THE TREATMENT DOES NOT ACTUALLY GET TREATED OR THE COMPARISON GETS TREATED

Some people assigned to the treatment may in the end not actually get treated. In an after-school tutoring program, for example, some children assigned to receive tutoring may simply not show up for tutoring. And the others
assigned to the comparison may obtain access to the treatment, either from the program or from another provider. Also, comparison group children may get extra help from the teachers or acquire program materials and methods from their classmates. In any of these scenarios, people are not complying with their assignment in the planned experiment. This is called “partial compliance” or “diffusion” or, less benignly, “contamination.” In contrast to carefully-controlled lab experiments, diffusion is ubiquitous in social programs. After all, life goes on, people will be people, and you have no control over what they decide to do over the course of the experiment. All you can do is plan your experiment and offer them treatments. How, then, can you deal with the complications that arise from partial compliance?

Discussion Topic 3

Managing partial compliance

Suppose that farmers who have adoption level 0 are too risk-averse to adopt the techniques they learn at the training. Farmers believe that there is no way for them to adopt the techniques that are described in early trainings and stop attending. Consequently, none of the treatment farmers with adoption level 0 increased their adoption and remained at level 0 at the end of the program. No one assigned to comparison had attended the trainings. All the farmers in the sample at the beginning of the program were followed up.

Table 2

<table>
<thead>
<tr>
<th>Adoption Level</th>
<th>Pre-adoption</th>
<th>Post-adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>1</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Total # farmer in the sample</td>
<td>900</td>
<td>900</td>
</tr>
</tbody>
</table>

1. Calculate the impact estimate based on the original group assignments.
 a. Is this an unbiased measure of the effect of the program?
 b. In what ways is it useful and in what ways is it not as useful?
 You are interested in learning the effect of treatment on those actually treated (“treatment on the treated” [TOT] estimate).

2. Five of your colleagues are passing by your desk; they all agree that you should calculate the effect of the treatment using only the 10,000 farmers who attended the training.

3. Is this advice sound? Why or why not?

4. Another colleague says that it’s not a good idea to drop the farmers who stopped attending the trainings entirely; you should use them but consider them as part of the control group.

5. Is this advice sound? Why or why not?

6. Another colleague suggests that you use the compliance rates (the proportion of people in each group that did or did not comply with their treatment assignment). You should divide the “intention to treat” estimate by the difference in the treatment ratios (i.e. proportions of each experimental group that received the treatment).

7. Is this advice sound? Why or why not?

MANAGING SPILLOVERS—WHEN THE COMPARISON, ITSELF UNTREATED, BENEFITS FROM THE TREATMENT BEING TREATED

People assigned to the control group may benefit indirectly from those receiving treatment. For example, a program that distributes insecticide-treated nets may reduce malaria transmission in the community, indirectly benefiting those who themselves do not sleep under a net. Such effects are called externalities or spillovers.
Discussion Topic 4
Managing spillovers

In the TechnoServe agronomy training evaluation, randomization was at the farmer level, meaning that while one farmer might have been selected to be in the training, his neighbor didn’t have the same fortunes during the randomization process.

Depending on the evaluation and the nature of the program, it might be more challenging to prevent spillovers of agronomic knowledge between friends, than it is for delivering hard tangible objects in farmers’ hands, like a weighing scale or calendar to maintain harvest records.

1. How do you imagine spillovers might occur in agronomy training?
2. What types of mechanisms can you think of that could be used to reduce or manage spillovers?

Discussion Topic 5
Measuring spillovers

1. Can you think of ways to design the experiment explicitly to measure the spillovers of the agronomy training?
EXERCISE A: UNDERSTANDING RANDOM SAMPLING AND THE LAW OF LARGE NUMBERS

In this exercise, we will visually explore random samples of different sizes from a given population. In particular, we will try to demonstrate that larger sample sizes tend to be more reflective of the underlying population.

1. Open the file “Exercise A_SamplingDistributions.xlsm”.
2. If prompted, select “Enable Macros”.
3. Navigate to the “Randomize” worksheet, which allows you to choose a random sample of size “Sample Size” from the data contained in the “control” worksheet.
4. Enter “10” for “Sample Size and click the “Randomize” button. Observe the distribution of the various characteristics between Treatment, Control and Expected. With a sample size this small, the percentage difference from the expected average is quite high for reading scores. Click “Randomize” multiple times and observe how the distribution changes.
5. Now, try “50” for the sample size. What happens to the distributions? Randomize a few times and observe the percentage difference for the reading scores.
6. Increase the sample size to “500”, “2000” and “10000”, and repeat the observations from step 5. What can we say about larger sample sizes? How do they affect our Treatment and Control samples? Should the percentage difference between Treatment, Control and Expected always go down as we increase sample size?
EXERCISE B: HOW TO DO RANDOM ASSIGNMENT USING MS EXCEL

TABLE OF CONTENTS

INTRODUCTION

Like most spreadsheet programs, MS Excel can generate random numbers on command. MS Excel has two native randomnumber-generating functions. The first, =RAND(), creates a continuous random number between 0 and 1—it could be any number of 9 decimal places between 0 and 1. The second, =RANDBETWEEN(bottom, top) creates integers between any two integer values within a range, where you specify the bottom and top of that range.

PART 1: SIMPLE RANDOMIZATION

Say we had a list of schools and we wanted to assign them to treatment or control based on a coin flip (heads = treatment and tails = control). We can do this by randomly generating the value of 0 or 1 using the RANDBETWEEN function, and choosing 0 and 1 as the range. We could then assign all schools with 0 to the control group, and all schools with 1 to the treatment group (or vice versa). This is equivalent to a coin flip where 0 represents tails and 1 represents control. Equivalently, we could produce a continuous random number for each observation and assign those with (say) random number greater than or equal to 0.5 to treatment and smaller than 0.5 to control.

The illustration below shows how to do this step-by-step.
We have a list of all schools

<table>
<thead>
<tr>
<th>SchoolID</th>
<th>SchoolName</th>
<th>Pre-test score</th>
<th>Random #</th>
<th>T-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Babajipura G M M Kumar shala No. 1</td>
<td>34.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Babajipura Kanya Shala No. 3</td>
<td>25.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Babajipura Mishra Shala No. 7</td>
<td>12.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Babajipura Mishra Shala No. 8</td>
<td>20.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Babajipura Marathi Mishra Shala No. 12</td>
<td>37.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Babajipura Kanya Shala No. 13</td>
<td>32.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Babajipura Mishra Shala No. 14</td>
<td>16.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Babajipura Kumar Shala No. 17</td>
<td>20.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Babajipura Mishra Shala No. 18</td>
<td>28.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Babajipura Mishra Shala No. 19</td>
<td>21.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Babajipura Mishra Shala No. 20</td>
<td>26.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Babajipura Mishra Shala No. 21</td>
<td>16.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Babajipura Kumar Shala No. 25</td>
<td>21.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Babajipura Kanya Shala No. 26</td>
<td>25.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Babajipura Mishra Shala No. 27</td>
<td>26.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Babajipura Mishra Shala No. 28</td>
<td>29.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Babajipura Hindi Mishra Shala No. 30</td>
<td>18.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Babajipura Mishra Shala No. 31</td>
<td>20.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Babajipura Mishra Shala No. 32</td>
<td>34.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Fatehpura Kumar Shala No. 1</td>
<td>30.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Fatehpura Mishra Shala No. 2</td>
<td>19.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Fatehpura Mishra Shala No. 9</td>
<td>25.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Fatehpura Kanya Shala No. 10</td>
<td>18.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Fatehpura Mishra Shala No. 11</td>
<td>21.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Fatehpura Kumar Shala No. 13</td>
<td>18.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Fatehpura Hindi Mishra Shala No. 15</td>
<td>23.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Fatehpura Mishra Shala No. 16</td>
<td>22.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Fatehpura Mishra Shala No. 18</td>
<td>15.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Fatehpura Mishra Shala No. 19</td>
<td>25.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>N. Sayajiganj Mishra Shala No. 1 (center)</td>
<td>18.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>N. Sayajiganj Marathi Mishra Shala No. 3</td>
<td>31.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Sayajiganj Mishra Shala No. 5</td>
<td>19.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Sayajiganj Kumar Shala No. 6</td>
<td>20.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Savajiganj Mishra Shala No. 7</td>
<td>47.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1: Assign a random number to each school

The function RAND () is Excel’s basic random number generator. To use it, go to Column D and type

\[=\text{RAND()}\]

in each cell, adjacent to each school name. Or you can type this function in the top row (row 2) and simply copy and paste to the entire column, or click and drag.
Typing **=RAND()** puts a 9-digit random number between 0 and 1 in the cell.

<table>
<thead>
<tr>
<th>SchoolID</th>
<th>SchoolName</th>
<th>Pre-test score</th>
<th>Random #</th>
<th>T-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Babajipura G.M.M. Kumar shala No. 1</td>
<td>34.12</td>
<td>=RAND()</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Babajipura Kanya Shala No. 3</td>
<td>25.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Babajipura Mishra Shala No. 7</td>
<td>12.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Babajipura Mishra Shala No. 8</td>
<td>20.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Babajipura Marathi Mishra Shala No. 12</td>
<td>37.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Babajipura Kanya Shala No. 13</td>
<td>32.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Babajipura Mishra Shala No. 14</td>
<td>16.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Babajipura Kanya Shala No. 17</td>
<td>20.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2: Copy the cells in Column D, then paste the values over the same cells

The function **=RAND()** will re-randomize each time you make any changes to any other part of the spreadsheet. Excel does this because it recalculates all values with any change to any cell. (You can also induce recalculation, and hence re-randomization, by pressing the F9 key.)
Exercise B • Random Assignment Using MS Excel •

Once we’ve generated our column of random numbers, we do not need to re-randomize. We already have a clean column of random values. To stop Excel from recalculating, you can replace the “functions” in this column with the “values”.

To do this, highlight all values in Column D. Then right-click anywhere in the highlighted column, and choose “Copy”.

Then, right-click anywhere in that column and choose “Paste Special.” The “Paste Special” window will appear. Click on “Values”.

Step 3: Assign treatment/control status for each group

Now use the IF function to assign schools to treatment and control. Go to column E and type

```
=IF(D2>=0.5,"T","C")
```

And click and drag (or copy and paste) to the rest of the column. This will enter a “T” for schools that have a random number greater than or equal to 0.5 and “C” for schools with random number less than 0.5.

Is the number of schools in both groups the same? We also have the average pre-test scores for each school. Does the average pre-test score look balanced between the two groups?
Note, however, that the number of schools in treatment and control will vary each time you re-randomize, as will the average pre-test score. To check this, repeat step 1, but this time instead of copy pasting values, press the F9 key to re-randomize. Re-randomize 10 times and see what happens to the number of schools and the average pre-test score in each group.

Does the number of schools change when you re-randomize? Does the average pre-test score look balanced every time you re-randomize?

Try the above steps using the RANDBETWEEN() function instead of the RAND() function. Do you expect significantly different results? How does the “IF” function change?

PART 2: COMPLETE RANDOMIZATION

Say we had a list of schools and wanted to assign exactly half of them to treatment and half to control

Step 1: Assign a random number to each school

Go to Column D and type:

```
=RAND()
```

And click and drag (or copy and paste) to the entire column.

Step 2: Copy the cells in Column D, then paste the values over the same cells

Highlight all values in Column D. Then right-click anywhere in the highlighted column, and choose “Copy”. Then, right-click anywhere in that column and choose “Paste Special.”

Step 3: Sort the columns in either descending or ascending order of Column D

Highlight columns A, B, C and D. In the data tab, press the “Sort” button:
A Sort box will pop up.

In the “Sort by” column, select “Random #.” Click OK. Doing this sorts the list by the random number in ascending or descending order, whichever you chose.

There! You have a randomly sorted list.
Because your list is randomly sorted, it is completely random whether schools are in the top half of the list, or the bottom half. Therefore, if you assign the top half to the treatment group and the bottom half to the control group, your schools have been “randomly assigned.”

Step 4: Assign treatment/control status for each group

There are two ways to do this. To do this manually, in column E, type “T” for the first half of the rows (rows 2–63) and for the second half of the rows (rows 62–123), type “C”. You can also do this by using the IF and MEDIAN functions. In Column E type:

=IF(D2<=MEDIAN(D2:D123),"T","C")

And click and drag (or copy and paste) to the entire column. This will enter a “T” for schools that are below or at the median of the random number and a “C” for schools that are above it.

Now select columns A through E and re-sort your list back in order of “SchoolID.” You’ll see that your schools have been randomly assigned to treatment and control groups.
Is the number of schools in both groups the same? Does the average pre-test score look balanced between the two groups?

Note that the number of schools in treatment and control will remain the same each time you re-randomize. This is because you are making sure that you always assign half of them to treatment and half to control. To check this, repeat step 1, but this time instead of copy pasting values, press the F9 key to re-randomize. Notice that the formula in column E will automatically recalculate the median each time and re-assign treatment and control status. Re-randomize 10 times and see what happens to the number of schools and the average pre-test score in each group.

Does the number of schools change when you re-randomize? Does the average pre-test score look balanced every time you re-randomize?

PART 3: STRATIFIED RANDOMIZATION

Stratification is the process of dividing a sample into groups, and then randomly assigning individuals within each group to the treatment and control. The reasons for doing this are rather technical. One reason for stratifying is that it ensures subgroups are balanced, making it easier to perform certain subgroup analyses. For example, if you want to test the effectiveness on a new education program separately for schools where children are taught in Hindi versus schools where children are taught in Gujarati, you can stratify by “language of instruction” and ensure that there are an equal number of schools of each language type in the treatment and control groups.

We have our list of schools and potential “strata”

Mechanically, the only difference in random sorting is that instead of simply sorting by the random number, you would first sort by language, and then the random number. Obviously, the first step is to ensure you have the variables by which you hope to stratify.
Step 1: Assign a random number to each school

Go to Column F and type:

`=RAND()`

And click and drag (or copy and paste) to the entire column.

Step 2: Copy the cells in Column F, then paste the values over the same cells

Highlight all values in Column F. Then right-click anywhere in the highlighted column, and choose “Copy”. Then, right-click anywhere in that column and choose “Paste Special.”

Step 3: Sort by strata and then by random number

Assuming you have all the variables you need, you can now click “Sort” in the data tab. The Sort window will pop up. Sort by “Language.” Press the “Add Level” button. Then select “Random #”.

Step 4: Assign treatment/control status for each group

There are two ways to do this. To do this manually, in column G, within each languages category, type “T” for the first half of the rows, and “C” for the second half. You can also do this by using the IF and MEDIAN functions. In Column G type and instead of just hitting ENTER, hit CTRL+SHIFT+ENTER in order to tell Excel that it’s an array formula:

`=IF(F2<MEDIAN(IF(D2:D123=D2,F2:F123)),"T","C")`

Click and drag (or copy and paste) to the entire column. This will enter a “T” for schools that are below or at the median of the random number and a “C” for schools that are above it for each language category.

Is the total number of schools in both groups the same? Is the number of schools for each language category for both groups the same? Does the average pre-test score look balanced between the two groups?
Note that the total number of schools and the number of schools for each language category in treatment and control will remain the same each time you re-randomize. To check this, repeat step 1, but this time instead of copy pasting values, press the F9 key to re-randomize. Notice that the formula in column E will automatically recalculate the median for each category every time and re-assign treatment and control status. Re-randomize 10 times and see what happens to the number of schools and the average pre-test score in each group.

Does the total number of schools change when you re-randomize? Does the number of schools for each language category change? Does the average pre-test score look balanced every time you re-randomize?
EXERCISE C: HOW TO DO POWER CALCULATIONS IN OPTIMAL DESIGN SOFTWARE

TABLE OF CONTENTS
Key Vocabulary..37
Introduction...38
Using the Optimal Design Software ..38
Estimating Sample Size for a Simple Experiment...43
Some Wrinkles: Limited Resources and Imperfect Compliance..47
Clustered Designs..48

KEY VOCABULARY

1. **POWER**: The likelihood that, when a program/treatment has an effect, you will be able to distinguish the effect from zero i.e. from a situation where the program has no effect, given the sample size.

2. **SIGNIFICANCE**: The likelihood that the measured effect did not occur by chance. Statistical tests are performed to determine whether one group (e.g. the experimental group) is different from another group (e.g. comparison group) on certain outcome indicators of interest (for instance, test scores in an education program.)

3. **STANDARD DEVIATION**: For a particular indicator, a measure of the variation (or spread) of a sample or population. Mathematically, this is the square root of the variance.

4. **STANDARDIZED EFFECT SIZE**: A standardized (or normalized) measure of the [expected] magnitude of the effect of a program. Mathematically, it is the difference between the treatment and control group (or between any two treatment arms) for a particular outcome, divided by the standard deviation of that outcome in the control (or comparison) group.

5. **CLUSTER**: The unit of observation at which a sample size is randomized (e.g. school), each of which typically contains several units of observation that are measured (e.g. students). Generally, observations that are highly correlated with each other should be clustered and the estimated sample size required should be measured with an adjustment for clustering.
6. INTRA-CLUSTER CORRELATION COEFFICIENT (ICC): A measure of the correlation between observations within a cluster. For instance, if your experiment is clustered at the school level, the ICC would be the level of correlation in test scores for children in a given school relative to the overall correlation of students in all schools.

INTRODUCTION

This exercise will help explain the trade-offs to power when designing a randomized trial. Should we sample every student in just a few schools? Should we sample a few students from many schools? How do we decide?

We will work through these questions by determining the sample size that allows us to detect a specific effect with at least 80 percent power, which is a commonly accepted level of power. Remember that power is the likelihood that when a program/treatment has an effect, you will be able to distinguish it from zero in your sample. Therefore at 80% power, if an intervention’s impact is statistically significant at exactly the 5% level, then for a given sample size, we are 80% likely to detect an impact (i.e. we will be able to reject the null hypothesis.)

In going through this exercise, we will use the example of an education intervention that seeks to raise test scores. This exercise will demonstrate how the power of our sample changes with the number of school children, the number of children in each classroom, the expected magnitude of the change in test scores, and the extent to which children within a classroom behave more similarly than children across classrooms. We will use a software program called Optimal Design, developed by Stephen Raudenbush et al. with funding from the William T. Grant Foundation. Additional resources on research designs can be found on their web site.

USING THE OPTIMAL DESIGN SOFTWARE

Optimal Design produces a graph that can show a number of comparisons: Power versus sample size (for a given effect), effect size versus sample size (for a given desired power), with many other options. The chart below shows power on the y-axis and sample size on the x-axis. In this case, we inputted an effect size of 0.18 standard deviations (explained in the example that follows) and we see that we need a sample size of 972 to obtain a power of 80%.
EXERCISE C • POWER CALCULATIONS WITH OPTIMAL DESIGN •

We will now go through a short example demonstrating how the OD software can be used to perform power calculations. If you haven’t downloaded a copy of the OD software yet, you can do so from the following website (where a software manual is also available):

http://sitemaker.umich.edu/group-based/optimal_design_software

Running the HLM software file “od” should give you a screen which looks like the one below:

The various menu options under “Design” allow you to perform power calculations for randomized trials of various designs.

Let’s work through an example that demonstrates how the sample size for a simple experiment can be calculated using OD. Follow the step-by-step instructions as you replicate the power calculations presented in this example, in OD. On the next page we have shown a sample OD graph, highlighting the various components that go into power calculations. These are:

- **Significance level (α):** For the significance level, typically denoted by α, the default value of 0.05 (i.e. a significance level of 95%) is commonly accepted.

- **Standardized effect size (δ):** Optimal Design (OD) requires that you input the standardized effect size, which is the effect size expressed in terms of a normal distribution with mean 0 and standard deviation 1. This will be explained in further detail below. The default value for δ is set to 0.200 in OD.

- **Proportion of explained variation by level 1 covariate (R²):** This is the proportion of variation that you expect to be able to control for by including covariates (i.e. explanatory variables other than the treatment) in your design or your specification. The default value for R² is set to 0 in OD.

- **Range of axes (≤x≤ and ≤y≤):** Changing the values here allows you to view a larger range in the resulting graph, which you will use to determine power.
Inputted parameters; in this case, \(\alpha \) was set to 0.05 and \(\delta \) was set to 0.13.
We will walk through each of these parameters below and the steps involved in doing a power calculation. Prior to that though, it is worth taking a step back to consider what one might call the “paradox of power”. Put simply, in order to perfectly calculate the sample size that your study will need, it is necessary to know a number of things: the effect of the program, the mean and standard deviation of your outcome indicator of interest for the control group, and a whole host of other factors that we deal with further on in the exercise. However, we cannot know or observe these final outcomes until we actually conduct the experiment! We are thus left with the following paradox: In order to conduct the experiment, we need to decide on a sample size…a decision that is contingent upon a number of outcomes that we cannot know without conducting the experiment in the first place.

It is in this regard that power calculations involve making careful assumptions about what the final outcomes are likely to be – for instance, what effect you realistically expect your program to have, or what you anticipate the average outcome for the control group being. These assumptions are often informed by real data: from previous studies of similar programs, pilot studies in your population of interest, etc. The main thing to note here is that to a certain extent, power calculations are more of an art than a science. However, making wrong assumptions will not affect accuracy (i.e., will not bias the results). It simply affects the precision with which you will be able to estimate your impact. Either way, it is useful to justify your assumptions, which requires carefully thinking through the details of your program and context.

With that said, let us work through the steps for a power calculation using an example. Say your research team is interested in looking at the impact of providing students a tutor. These tutors work with children in grades 2, 3 and 4 who are identified as falling behind their peers. Through a pilot survey, we know that the average test scores of students before receiving tutoring is 26 out of 100, with a standard deviation of 20. We are interested in evaluating whether tutoring can cause a 10 percent increase in test scores.

1) Let’s find out the minimum sample that you will need in order to be able to detect whether the tutoring program causes a 10 percent increase in test scores. Assume that you are randomizing at the school level i.e. there are treatment schools and control schools.

I. What will be the mean test score of members of the control group? What will the standard deviation be?

 Answer:

II. If the intervention is supposed to increase test scores by 10%, what should you expect the mean and standard deviation of the treatment group to be after the intervention? Remember, in this case we are considering a 10% increase in scores over the scores of the control group, which we calculated in part I.

 Answer:
III. Optimal Design (OD) requires that you input the standardized effect size, which is the effect size expressed in terms of a normal distribution with mean 0 and standard deviation 1. Two of the most important ingredients in determining power are the effect size and the variance (or standard deviation). The standardized effect size basically combines these two ingredients into one number. The standardized effect size is typically denoted using the symbol δ (delta), and can be calculated using the following formula:

$$\delta = \frac{(\text{Treatment Mean} - \text{Control Mean})}{(\text{Standard Deviation})}$$

Using this formula, what is δ?

Answer:

IV. Now use OD to calculate the sample size that you need in order to detect a 10% increase in test scores. You can do this by navigating in OD as follows:

Design \Rightarrow Person Randomized Trials \Rightarrow Single Level Trial \Rightarrow Power vs. Total number of people (n)

There are various parameters that you will be asked to fill in:

You can do this by clicking on the button with the symbol of the parameter. To reiterate, the parameters are:

- Significance level (α): For the significance level, typically denoted by α, the default value of 0.05 (i.e. a significance level of 95%) is commonly accepted.

- Standardized effect size (δ): The default value for δ is set to 0.200 in OD. However, you will want to change this to the value that we computed for δ in part C.

- Proportion of explained variation by level 1 covariate (R^2): This is the proportion of variation that you expect to be able to control for by including covariates (i.e. other explanatory variables other than the treatment) in your design or your specification. We will leave this at the default value of 0 for now and return to it later on.
- Range of axes (≤x≤ and ≤y≤): Changing the values here allows you to view a larger range in the resulting graph, which you will use to determine power; we will return to this later, but can leave them at the default values for now.

What will your total sample size need to be in order to detect a 10% increase in test scores at 80% power?

Answer:

ESTIMATING SAMPLE SIZE FOR A SIMPLE EXPERIMENT

All right, now it is your turn! For the parts A – I below, leave the value of R^2 at the default of 0 whenever you use OD; we will experiment with changes in the R^2 value a little later.

You decide that you would like your study to be powered to measure an increase in test scores of 20% rather than 10%. Try going through the steps that we went through in the example above. Let’s find out the minimum sample you will need in order to detect whether the tutoring program can increase test scores by 20%.

A. What is the mean test score for the control group? What is the standard deviation?
E X E R C I S E C • P O W E R C A L C U L A T I O N S W I T H O P T I M A L D E S I G N •

Mean:

Standard deviation:

B. If the intervention is supposed to increase test scores by 20%, what should you expect the mean and standard deviation of the treatment group to be after the intervention?

Mean:

Standard deviation:

C. What is the desired standardized effect size δ? Remember, the formula for calculating δ is:

$$\delta = \frac{(\text{Treatment Mean} - \text{Control Mean})}{(\text{Standard Deviation})}$$

δ:

D. Now use OD to calculate the sample size that you need in order to detect a 20% increase in test scores.

Sample size (n):

Treatment:

Control:

E. Is the minimum sample size required to detect a 10% increase in test scores larger or smaller than the minimum sample size required to detect a 20% increase in test scores? Intuitively, will you need larger or smaller samples to measure smaller effect sizes?

Answer:

F. Your research team has been thrown into a state of confusion! While one prior study led you to believe that a 20% increase in test scores is possible, a recently published study suggests that a more conservative 10% increase is more plausible. What sample size should you pick for your study?

Answer:
G. Both the studies mentioned in part F found that although average test scores increased after the tutoring intervention, the standard deviation of test scores also increased i.e. there was a larger spread of test scores across the treatment groups. To account for this, you posit that instead of 20, the standard deviation of test scores may now be 25 after the tutoring program. Calculate the new δ for an increase of 10% in test scores.

δ:

H. For an effect of 10% on test scores, does the corresponding standardized effect size increase, decrease, or remain the same if the standard deviation is 25 versus 20? Without plugging the values into OD, all other things being equal, what impact does a higher standard deviation of your outcome of interest have on your required sample size?

Answer:

I. Having gone through the intuition, now use OD to calculate the sample size required in order to detect a 10% increase in test scores, if the pre-intervention mean test scores are 26, with a standard deviation of 25.

Sample size (n):

Treatment:

Control:

J. One way by which you can increase your power is to include covariates i.e. control variables that you expect will explain some part of the variation in your outcome of interest. For instance, baseline, pre-intervention test scores may be a strong predictor of a child’s post-intervention test scores; including baseline test scores in your eventual regression specification would help you to isolate the variation in test scores attributable to the tutoring intervention more precisely. You can account for the presence of covariates in your power calculations using the R^2 parameter, in which you specify what proportion of the eventual variation in your outcome of interest is attributable to your treatment condition.

Say that you have access to the pre-intervention test scores of children in your sample for the tutoring study. Moreover, you expect that pre-intervention test scores explain 50% of the variation in post-intervention scores. What size sample will you require in order to measure an increase in test scores of 10%, assuming standard deviation in test scores of 25, with a pre-intervention mean of 26. Is this more or less than the sample size that you calculated in part I?
Sample size (n):

Treatment:

Control:

K. One of your colleagues on the research team thinks that 50% may be too ambitious an estimate of how much of the variation in test scores post intervention is attributable to baseline scores. She suggests that 20% may be a better estimate. What happens to your required sample size when you run the calculations from part J with an R^2 of 0.200 instead of 0.500? What happens if you set R^2 to be 1.000?

Tip: You can enter up to 3 separate values on the same graph for the R^2 in OD; if you do, you will end up with a figure like the one below:

Answer:
SOME WRINKLES: LIMITED RESOURCES AND IMPERFECT COMPLIANCE

L. You find out that you only have enough funds to survey 1,200 children. Assume that you do not have data on baseline covariates, but know that pre-intervention test scores were 26 on average, with a standard deviation of 20. What standardized effect size (δ) would you need to observe in order to survey a maximum of 1,200 children and still retain 80% power? Assume that the \(R^2 \) is 0 for this exercise since you have no baseline covariate data.

*Hint: You will need to plot “Power vs. Effect size (delta)” in OD, setting “N” to 1,200. You can do this by navigating in OD as follows:
Design → Person Randomized Trials → Single Level Trial → Power vs. Effect Size (delta). Then, click on the point of your graph that roughly corresponds to power = 0.80 on the y-axis.*

\[\delta = \]

M. Your research team estimates that you will not realistically see more than a 10% increase in test scores due to the intervention. Given this information, is it worth carrying out the study on just 1,200 children if you are adamant about still being powered at 80%?

Answer:

N. Your research team is hit with a crisis: You are told that you cannot force people to use the tutors! After some small focus groups, you estimate that only 40% of schoolchildren would be interested in the tutoring services. You realize that this intervention would only work for a very limited number of schoolchildren. You do not know in advance whether students are likely to take up the tutoring service or not. How does this affect your power calculations?

Answer:

O. You have to “adjust” the effect size you want to detect by the proportion of individuals that actually gets treated. Based on this, what will be your “adjusted” effect size and the adjusted standardized effect size (\(\delta \)) if you originally wanted to measure a 10% increase in test scores? Assume that your pre-intervention mean test score is 26, with a standard deviation of 20, you do not have any data on covariates, and that you can survey as many children as you want.

Hint: Keep in mind that we are calculating the average treatment effect for the entire group here. Thus, the lower the number of children that actually receives the tutoring intervention, the lower will be the measured effect size.

Answer:
What sample size will you need in order to measure the effect size that you calculated in part O with 80% power? Is this sample bigger or smaller than the sample required when you assume that 100% of children take up the tutoring intervention (as we did in the example at the start)?

Sample size (n):
- Treatment:
- Control:

Clustered Designs

Thus far we have considered a simple design where we randomize at the individual-level i.e. school children are either assigned to the treatment (tutoring) or control (no tutoring) condition. However, spillovers could be a major concern with such a design: if treatment and control students are in the same school, let alone the same classroom, students receiving tutoring may affect the outcomes for students not receiving tutoring (through peer learning effects) and vice versa. This would lead us to get a biased estimate of the impact of the tutoring program.

In order to preclude this, your research team decides that it would like to run a cluster randomized trial, randomizing at the school-level instead of the individual-level. In this case, each school forms a “cluster”, with all the students in a given school assigned to either the treatment condition, or the control one. Under such a design, the only spillovers that may show up would be across schools, a far less likely possibility than spillovers within schools.

Since the behavior of individuals in a given cluster will be correlated, we need to take an intra-cluster or intra-class correlation (denoted by the Greek symbol ρ) into account for each outcome variable of interest. Remember, ρ is a measure of the correlation between children within a given school (see key vocabulary at the start of this exercise). ρ tells us how strongly the outcomes are correlated for units within the same cluster. If students from the same school were clones (no variation) and all scored the same on the test, then ρ would equal 1. If, on the other hand, students from the same schools were in fact independent and there was zero difference between schools or any other factor that affected those students, then ρ would equal 0.

The ρ or ICC of a given variable is typically determined by looking at pilot or baseline data for your population of interest. Should you not have the data, another way of estimating the ρ is to look at other studies examining similar outcomes amongst similar populations. Given the inherent uncertainty with this, it is useful to consider a range of ρs when conducting your power calculations (a sensitivity analysis) to see how sensitive they are to changes in ρ. We will look at this a little further on. While the ρ can vary widely depending on what you are looking at, values of less than 0.05 are typically considered low, values between 0.05-0.20 are considered to be of moderate size, and values above 0.20 are considered fairly high. Again, what counts as a low ρ and what counts as a high ρ can vary dramatically by context and outcome of interest, but these ranges can serve as initial rules of thumb.

Based on a pilot study and earlier tutoring interventions, your research team has determined that the ρ is 0.17. You need to calculate the total sample size to measure a 15% increase in test scores (assuming that test scores at the baseline are 26 on average, with a standard deviation of 20, setting R^2 to 0 for now). You can do this by navigating in OD as follows:
Design \rightarrow Cluster Randomized Trials with person-level outcomes \rightarrow Cluster Randomized Trials \rightarrow Treatment at Level 2 \rightarrow Power vs. total number of clusters (J)

In the bar at the top, you will see the same parameters as before, with an additional option for the intra-cluster correlation. Note that OD uses "n" to denote the cluster size here, not the total sample size. OD assigns two default values for the effect size (δ) and the intra-cluster correlation (ρ), so do not be alarmed if you see four lines on the chart. Simply delete the default values and replace them with the values for the effect size and intra-cluster correlation that you are using.

Q. What is the effect size (δ) that you want to detect here? Remember that the formula for calculating δ is:

$$\delta = \frac{(Treatment Mean - Control Mean)}{(Standard Deviation)}$$

δ:

R. Assuming there are 40 children per school, how many schools would you need in your clustered randomized trial?

Answer:

S. Given your answer above, what will the total size of your sample be?

Sample size:

- **Treatment:**
- **Control:**
T. What would the number of schools and total sample size be if you assumed that 20 children from each school were part of the sample? What about if 100 children from each school were part of the sample?

<table>
<thead>
<tr>
<th>Number of schools:</th>
<th>20 children per school</th>
<th>40 children per school</th>
<th>100 children per school</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of students:</td>
<td>40</td>
<td>6,400</td>
<td></td>
</tr>
</tbody>
</table>

U. As the number of clusters increases, does the total number of students required for your study increase or decrease? Why do you suspect this is the case? What happens as the number of children per school increases?

Answer:

V. You realize that you had read the pilot data wrong: It turns out that the p is actually 0.07 and not 0.17. Now what would the number of schools and total sample size be if you assumed that 20 children from each school were part of the sample? What about if 40 or 100 children from each school were part of the sample?

<table>
<thead>
<tr>
<th>Number of schools:</th>
<th>20 children per school</th>
<th>40 children per school</th>
<th>100 children per school</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of students:</td>
<td>40</td>
<td>6,400</td>
<td></td>
</tr>
</tbody>
</table>

W. How does the total sample size change as you increase the number of individuals per cluster in part V? How do your answers here compare to your answers in part T?

Answer:

X. Given a choice between offering the tutors to more children in each school (i.e. adding more individuals to the cluster) versus offering tutors in more schools (i.e. adding more clusters), which
option is best purely from the perspective of improving statistical power? Can you imagine a situation when there will not be much difference between the two from the perspective of power?

Answer:
Incorporating Evidence into Decision Making

Please note that this case study is hypothetical.

You have been approached by a consortium of organizations that would like to establish a catch up program to improve the quality of education in Zambia. The consortium consists of donors and international organizations. They are interested to see if the government supports their ideas and can help them move forward. The following is a summary of the consortium’s pitch.

The problem
Zambia’s adoption of free basic education in 2002 has resulted in almost full primary school enrolment, with the net enrolment rate climbing to 98% for the period from 2009 to 2013 (UNICEF 2015). However, the gains in enrolment have not been matched by improvements in literacy and numeracy skills. Zambia falls much below the SAMEQ average for numeracy and literacy, with Grade 6 numeracy and literacy achievement scores decreasing from 2000 to 2007. The 2006 National Assessment found that 30% of 5th graders could not read. This means that many fifth graders cannot relate to what is being taught in class.

Causes
What could be causing the problems in schools? More importantly, what could be done to improve learning outcomes? Researchers from the J-PAL network set out to try to answer these questions. They conducted a series of randomized evaluations to investigate ways to improve education. They first tested the theory that schools would improve if given more resources. A series of randomized evaluations in several countries found that while physical access to schools does matter, increasing “business as usual” inputs had little impact on educational outcomes (Burde and Linden 2013, Glewwe et al 2000, Borkum et al 2013, Das et al 2013). An evaluation on a program increasing the provision of textbooks in Kenya found a curious outcome: the textbooks did help children at the top of the class, but had no impact on everyone else (Glewwe et al 2009). Researchers began to suspect that one reason educational outcomes were poor was that teachers were incentivized to teach the highest performing children in the class.

Product/intervention design
In 2014 the Ministry of Education introduced local languages as the mode of instruction for teaching initial literacy from pre-school to Grade 4. The consortium proposes that government choose one of two options: a) dedicating the first month of Grade 5 to basic numeracy and literacy skills to ensure that students have these foundational skills before progressing to English based instruction or b) starting a holiday break catch up program.

Necessary for this intervention is teacher training. The consortium will train teachers on catch up pedagogy in the month prior to the intervention during the school holiday. Furthermore, new materials and monitoring systems will be created in collaboration with the Curriculum Development Center and the Ministry of Education. The objective of the project is to provide a solid foundation for the catch up program, but the aim is for the government to take ownership of the project after the first few years of implementation.
Questions for discussion:

- What is your initial impression of the model? Do you think it’s likely to work and why and why not?

- What is the underlying theory of change

You think the program sounds like a good idea but you are not sure how much social impact the program will achieve. To determine the program’s potential for social impact, you undertake a literature review of the existing evidence in this sector. As you read each piece of evidence, consider the following questions:

- Is the evidence relevant to the model under consideration?
- What insight does this evidence shed on the model and its theory of change?
Exhibit 1

Bringing in teaching assistants from outside of the government who focus on providing basic skills to the bottom of the class can improve learning outcomes ([Duflo, A. and Kiessel, J. ongoing])

Research group Innovations for Poverty Action partnered with Ghana Education Services, Ghana National Association of Teachers, and the National Youth Employment Program, to develop and evaluate the Teacher Community Assistant Initiative (TCAI). The initiative recruited teaching assistants from high school graduates in local communities and placed them into Grades 1-3 in government primary schools across Ghana.

The program included four implementation designs (plus a control group):

1. In-school remedial assistants focusing on catch up with the weakest students
2. After-school remedial assistants focusing on catch up with the weakest students
3. In-school remedial assistants to reduce class size without any catch up
4. Training of civil service teachers to provide small group catch up instruction to children

All four treatment arms had a positive impact on the student learning, but having assistants provide remedial instruction targeted to the lowest performing pupils improved children’s basic skills in numeracy and literacy, with test scores for students who received the program in Grades 2 & 3 increasing by 6% with respect to the control group. The assistants in schools who did not focus on catch-up and the training of the teachers to lead catch-up led to smaller gains (5 and 4% respectively). This suggests that catch up could be could be implemented by teachers, but they were unlikely to systematically implement the catch up program in which they are trained.

Exhibit 2

Reading camps implemented by teachers can boost literacy scores. ([Duflo et al. 2011])

This randomized evaluation looks at five catch up interventions in Grades 1 to 5:

1. One month teacher led summer camp
2. After school volunteer catch up program
3. Volunteer taught catch up in school
4. Providing teacher with catch up material and training
5. Providing teachers with materials but no training

The one month summer camp increased reading and math scores by 0.08 standard deviations. Considering that only 13% of kids attended the camp, this translates into a 0.35 standard deviation change for kids who attended. The out of school volunteer program had a larger impact than the holiday camp across all students (0.11 standard deviation change in overall test scores, with the biggest impact on local language skills). The other three interventions had no impact on children’s test scores.

Exhibit 3

Catch up programs run by government teachers in schools can have an impact on local language scores if the teachers are well monitored. ([Berry et al. ongoing])

A randomized evaluation in Haryana, India, looked at the impact of sorting children from Grades 1-4 for an hour a day according to the learning level as opposed to their age and focusing on learning level appropriate material. Students in schools with the program had scores 0.15 standard deviations higher on the Hindi reading test and 0.135 standard deviations higher on the Hindi written test, compared to students in comparison schools. The largest gains were concentrated among students who could only recognize letters at baseline.
Exhibit 4

Computers can be effective in improving learning outcomes, but only when the program allows for students to progress at their own level. (Banerjee et al., 2004)

A randomized evaluation which assessed a computer assisted learning intervention found that allowing students to progress at their own level can have a positive impact of test scores. The intervention group spent two hours a week working independently with educational software. This software consisted of self-paced games in the local language, designed to improve basic math skills. The intervention was found to improve mathematics scores by 0.35 standard deviations in the first and 0.47 standard deviations in the second year of the intervention, with the largest impact for the lowest performing students.

Questions for discussion

- Based on the evidence from similar models, do you believe this program could generate significant social impact? Would you consider investing in this model?

- If you can’t make the decision without more information, what information from previous research would you like to see inform your decisions to the questions above?
References

Zambia Statistics

Evidence on Inputs:

Duflo, Annie and Kiessel, Jessica (2013): “Research to Practice “Presentation. 8 February (Kenya)

Targeted Instruction

Linden, Leigh (2008) “Complement or Substitute: The Effect of Technology on Student Achievement in India” J-PAL working paper, MIT.
Welcome to Nairobi!

Where to eat

1. About Thyme
 a. Cuisine: Multi-cuisine
 b. Location: Eldama Ravine Road, Westlands, Nairobi
 c. Contacts: + (254) 721 850 026
 d. Website: http://about-thyme.com/

2. Anghiti Restaurant:
 a. Cuisine: Indian
 b. Location: The New Rehema House, Rapta Road, Westlands
 c. Contacts: +254734 320 330

3. Open House:
 a. Cuisine: Indian
 b. Location: Westlands
 c. Opposite The Mall, Ring Road
 d. Website: http://www.openhouserestaurant.co.ke/

4. Fogo Gaucho:
 a. Cuisine: Brazilian
 b. Location: Viking House, Waiyaki Way
 c. Contacts: +254 712 123456
 d. Website: http://www.fogogauchoco.ke/about-us.html

5. Bangkok Chinese Restaurant:
 a. Cuisine: Chinese
 b. Location: Amee Arcade, Westlands, Nairobi
 c. Contacts: +254 20 375 1312
 d. Website: https://eatout.co.ke/nairobi/bangkok-chinese-restaurant

6. Java House:
 a. Cuisine: Mulit-Cuisine
 b. Locations:
 i. Sarit Centre, Parklands Road
 1. Contacts: +254 712 123456
 ii. Orbit Place, Westlands
 1. Contacts: +254 712 123456
 iii. Westlands Square, Ring Road, Opposite The Mall
 1. +254 712 123456
 c. Website: http://javahouseafrica.com/our-menu/

7. Art Caffe:
 a. Cuisine: Multi-Cuisine
 b. Location: The Oval, Ring Road
 c. Contacts: +254 712 123456
 d. Website: http://www.artcaffe.co.ke/menu/
Guidelines for the Group Presentations

Learning in groups, facilitated by a Teaching Assistant (TA), is a central component of the course. Included in this course is a group project, where the participants, facilitated by their TA, will design a proposal for how they could evaluate a social program of their own choosing, using a Randomized Evaluation.

The goal is for participants to plan a Randomized Evaluation that is both rigorous and pragmatic and, in doing so, consolidate and apply the knowledge learnt in the lectures. Ideally, the group presentation will be developed to the extent that it could be considered as the starting point for a real evaluation.

We encourage participants to choose a group project that is related to their work, even to the extent of it being a Randomized Evaluation that they would be interested in pursuing after the course, making the valuable advice from the Teaching Assistants and the J-PAL staff at the course further reaching and of greater benefit to the participants.

On the next page is a PowerPoint template that highlights the different steps that the proposal produced by the group should include. The template may be used as a guideline by the groups when they are preparing their presentation. The steps outlined in the PowerPoint template are:

1. Identifying and deciding on an intervention
2. Building the theory of change
3. Choosing the randomization method
4. Power calculations
5. Identifying potential threats and solutions
6. Dissemination of results

Each group will present on the final day of the course to the presenters and participants of the course. Presentations should be kept to 15 minutes, allowing for 15 minutes discussion led by J-PAL affiliates and staff. We will provide groups with template slides for their presentation (see next page).
Group Presentation Template

Title
List your Team Members
You don’t have to follow this exactly, this is just a guideline.

Evaluation Questions and Outcomes
• These should be directly linked to the TOC described above.
• What outcomes do you need to measure to test your research hypothesis?

Background
• Talk briefly about general context, needs assessment, problem you want to solve.

Evaluation Design
• Unit of randomization, type of randomization (why did you choose these?)
• The actual randomization design- i.e. specific treatment group(s)

Theory of Change
• Describe the specific intervention that you are evaluating.
• Talk about how it will solve part of the problem you described in the background.
• You may want to mention other causes of a problem that your intervention will not solve.
• (You can use the TOC template in the appendix.)

Group work session 1

Group work session 2
Data and Sample Size

• Outcomes
• Tell us where you will get the data – survey? Administrative?
• Power calcs
 – Justify where you got effect size and rho from, don’t make it up.
 – You may need to do separate power calcs for separate outcomes.

Potential challenges

• Talk about threats (attrition, spillover, etc.) and how you want to manage them.
• You may need to revise your power calcs.

Results

• Why (and for whom) they would be useful.
• How would you disseminate them.