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Abstract

According to national and international guidelines, achieving and maintaining asthma control is a major goal of
disease management. In closely controlled clinical trials, good asthma control can be achieved , with the medical
treatments currently available, in the majority of patients , but large population-based studies suggest that a
significant proportion of patients in real-life setting experience suboptimal levels of asthma control and report
lifestyle limitations with a considerable burden on quality of life. Poor treatment adherence and persistence, failure
to use inhalers correctly, heterogeneity of asthma phenotypes and associated co-morbidities are the main
contributing factors to poor disease control. Now, it is widely accepted that peripheral airway dysfunction , already
present in patients with mild asthma, is a key contributor of worse control. The aim of this paper is to investigate
the association between small-airways dysfunction and asthma symptoms/control. We therefore performed a
PubMed search using keywords : small airways; asthma (limits applied: Humans, English language) and selected
papers with a study population of asthmatic patients, reporting measurement of small-airways parameters and
clinical symptoms/control.
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Background
Asthma is one of the most common chronic conditions
in the world and the most common non-communicable
disease among children [1]; according to the World
Health Organization , the Global Burden of Disease
Study and the Global Asthma Report 2014 [2–4], asthma
affects an estimated 334 million people worldwide. The
prevalence of asthma has been reported to range from 1
to 18 % of the population in different countries [4]. Most
people affected are in low- and middle-income coun-
tries, and the prevalence of asthma is estimated to be in-
creasing fastest in those countries [4]. In Europe alone,
asthma affects 30 million people [5, 6] and is associated
with a significant socioeconomic burden [7, 8]. The Glo-
bal Burden of Disease Study estimated that asthma was
the 14th most important disorder in terms of global
years lived with disability [3].
The main goal of current asthma treatment guidelines

is to achieve clinical control, including control of

symptoms (daytime symptoms, night-time awakenings
and reliever inhaler use) , maintenance of normal activity
levels and to prevent exacerbations [9, 10].
Randomized controlled trials showed that asthma

control is an achievable target [11] , but the incidence
of asthma control in “real-life” clinical practice is
considerably lower and a substantial proportion of
asthmatics remain not well-controlled [12–14]. Ran-
domized controlled trials (RCT) are not representative
of real-life, because recruitment often includes only
patients with no (or negligible) co-morbid illnesses or
concurrent medications, those with good inhaler tech-
nique and high adherence to study therapies [15].
Lifestyle characteristics, as cigarette smoking, typically
result in patient exclusion. The level of asthma con-
trol is poor even in patients with mild asthma, regu-
larly treated with inhaled steroids [16]. Poor asthma
control is associated with increased risk of exacerba-
tions, impaired quality of life, increased health-care
utilization and reduced productivity [17–19]. History
of asthma exacerbations, poor treatment adherence,
failure to use inhalers correctly, heterogeneity of
asthma phenotypes and associated comorbidities are
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the main contributing factors to poor disease control
[20–24]. Recent studies suggest that persistent uncon-
trolled inflammation in the peripheral small airways
can also contribute to clinical expression and worse
control of asthma [25]. Historically, the small airways
are defined as airways with an internal diameter of
less than 2 mm that do not contain cartilage in their
walls and extend from the 8th generation airways to
the periphery of the lung, referring to the landmark
study of Macklem and Mead [26]. It is well estab-
lished that inflammation and remodeling in asthma
involve the large airways, but it is now widely ac-
cepted that small airways are the major site of inflam-
mation in asthma [27], with a chronic inflammatory
infiltrate consisting of eosinophils, T lymphocytes,
neutrophils, and macrophages; moreover trans-
bronchial biopsy findings show small airways inflam-
mation and remodeling in all severities of asthma
[27–30]. The small airways are known as the “quiet
zone” because they make only a small contribution to
airway resistance under normal circumstances. Con-
ventional physiological measurements are unable to
sensitively evaluate this airway region [31, 32] and
may become abnormal only once there is a significant
burden of disease, but in recent years more special-
ized tests have been developed, which may better as-
sess small-airways dysfunction. These tests are now
moving from clinical research laboratories into rou-
tine clinical practice. Table 1 summarizes the tech-
niques available for the assessment of small airways
disease. No assessment method is universally and dir-
ectly representative of peripheral airway function and
the value and limitations of each test have been ex-
tensively reviewed [33–35].
Evidence is accumulating to support a high prevalence

of impaired small airway function in patients with
asthma. Anderson and Colleagues [36] studied with im-
pulse oscillometry (IOS) the prevalence of small airways
dysfunction (SAD) in 368 patients with community

managed persistent asthma who were receiving treat-
ment as defined by British Thoracic Society (BTS). An
abnormal value for peripheral airways resistance (defined
as R5–R20 higher than 0.03 kPa/ l−1) was noted in 65 %
of patients on step two BTS treatment, 64 % of patients
on step three treatment, and 70 % of patients on BTS
step four treatment. Perez and colleagues [37] studied
441 patients with moderate-to-severe asthma with nor-
mal FEV1 and FEV1/FVC, treated with an association of
ICSs and LABAs . The prevalence of SAD was estimated
by both spirometry and plethysmography and defined by
the presence of the following parameters: (1) the differ-
ence between SVC and FVC to detect expiratory air
trapping; (2) FEF 25–75 %, and FEF 50 %, to detect distal
airflow limitation; (3) functional residual capacity, RV,
and RV/TLC as marker of air trapping/lung hyperinfla-
tion, a phenomenon closely associated with small air-
ways dysfunction (premature small airways closure or
near closure: the small airways begin to collapse at a
higher volume before expiration is complete). SAD was
found in more than half of the patients indicating that
the routinely used lung function tests can underestimate
dysfunctions occurring in the small airways. Recent stud-
ies suggest that abnormalities in the small airways can
contribute to the clinical expression of asthma [34, 35, 38]
and a systematic review showed that SAD is associated
with worse asthma control, a higher number of exacerba-
tions, the presence of nocturnal asthma, more severe
bronchial hyperresponsiveness (BHR) and exercise-
induced asthma [25]. Air trapping/lung hyperinflation are
characteristic features of the severe asthma population
[29, 85, 88] indicating an additional potential severe
asthma phenotype [29].

Small airways dysfunction and asthma symptoms
Several studies have linked small airway function to
asthma symptoms. Recently, Schiphof-Godart et al. se-
lected patient with SAD, based on FEF 50 %, and R5–R20
values from spirometry and IOS respectively [39].

Table 1 Techniques available for the assessment of small airways disease in comparison to large airway

Method Small airway function Large airway function

Spirometry FEF25–75 %, FVC, FVC/SVC FEV1, FEV1/FVC

Impulse oscillometry (IOS) R5–R20, X5, AX, Fres R20

Single Breath Nitrogen Washout (SBNW) or Multiple Breath
Nitrogen Washout (MBNW) test

Slope phase III, CV, CC, Sacin, Scond

Body plethysmography RV, RV/TLC

High Resolution Computerized Tomography (HRCT)Nuclear medicine
(Scintigrapy,SPECT,PET)3He-MRI

Air trapping, airway wall thicknessRegional ventilation
defectsNonventilated lung volume

Airway wall thickness

Bronchoscopy Transbronchial biopsy, BAL Endobronchial biopsy

Sputum induction Late phase sputum Early phase sputum

Exhaled nitrix oxide (eNO) Alveolar eNO Bronchial eNO

CT & computational fluid dynamics Changes in airway volume and resistence
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Patients with SAD reported to wheeze easily, were un-
able to breathe in deeply, mentioned more symptoms
related to BHR, experienced more pronounced exercise-
induced symptoms and more frequently had allergic
respiratory symptoms after exposure to allergens. Ac-
cording to asthma treatment guidelines [9, 10], the pres-
ence of night-time awakenings and activity limitation
due to exercise-related symptoms is a key factor for
worse asthma control. A history of EIB and exercise-
related respiratory symptoms occur more commonly in
patients with not well and very poorly controlled
asthma. Small airways involvement has been implicated
in exercise-induced asthma (EIA) and in the severity of
exercise-induced bronchoconstriction (EIB). Kaminsky
et al. reported that the small airways of patients with
EIA are responsive to cool, dry air, which suggests that
they play an important role in asthma in this patient
population [40]. The Authors also reported that baseline
peripheral airway resistance correlated significantly with
the degree of EIB in asthmatic patients. Decramer et al.
showed that peripheral resistance, as measured with the
forced oscillation technique, increases after a hyperventi-
lation test with cold, dry air [41]. This alteration is com-
patible with a more generalized constriction of the
peripheral as well as central airways. In asthmatic chil-
dren, FEF 25–75 %, a parameter of small airways function,
decrease in response to exercise without changes in
FEV1, mainly in patients with mild asthma [42]. Testing
mild asthmatic patients for airway hyperresponsiveness
with indirect stimuli, Aronsson et al. [43] showed that
those positive to mannitol had a significant increased
baseline value of IOS parameters such as ΔR5-R20 and
reactance area (AX). Lee et al. evaluate the characteris-
tics of airway obstruction in young asthmatics after an
exercise bronchial provocation test using IOS : more se-
vere exercise-induced bronchoconstriction is associated
with a higher increase in peripheral airways resistance
(R5–R20) but not with an increase in large-airways re-
sistance (R20) [44]. Two studies investigated the phase
III slope of the single-breath washout test before and
after a cold, dry air hyperventilation test and demon-
strated that an increase in the helium and sulfur hexa-
fluoride phase III slopes were associated with the degree
of EIB in the asthma patients [45, 46]. Chinellato et al.
assessed the correlation between alveolar production
(CalvNO) and bronchial flux (J(NO) of nitric oxide and
EIB in asthmatic children [47]. A significant correlation
was observed between severity of EIB and inflammation
of the central and peripheral airways. Linkosalo et al.
showed that in atopic children and adolescents increased
alveolar NO concentration correlated with the degree of
obstruction in smaller airways induced by exercise
challenge [48]. Taken together, these findings support
the view that inflammation and dysfunction in the

peripheral airways are crucial for more pronounced
exercise-induced symptoms in asthma.
Nocturnal symptoms and worsening of lung function

at night are common among patients with asthma and
are associated with poor asthma control. Several studies
investigate the association between SAD and nocturnal
asthma. Kraft and Colleagues have reported that patients
with nocturnal asthma demonstrate increase in periph-
eral airways resistance and greater inflammatory involve-
ment of the small airways [49, 50]. Patients with
nocturnal asthma exhibited significantly greater numbers
of eosinophils in the distal airways compared to the
proximal airway tree in biopsies undertaken during the
night and in bronchoalveolar lavage fluid [50, 51].
Lehtimaki et al. evaluate patients with newly-diagnosed
steroid-naive asthma, assessing alveolar NO concentration
and bronchial NO flux in 40 asthmatics and 40 healthy
controls [52]. Patients with nocturnal symptoms had a
higher alveolar NO concentration (1.7 ± 0.3 parts per bil-
lion (ppb)) than patients without nocturnal symptoms
(0.8 ± 0.3 ppb, p = 0.012) or healthy controls (1.0 ±
0.1 ppb, p = 0.032), suggesting that even in patients with
mild asthma, nocturnal symptoms are associated with
small-airways inflammation. Taken together, these studies
support the concept that SAD may contribute to the in-
creased night-time symptoms in patients with nocturnal
asthma.
Obesity has been linked with asthma symptoms, need

for asthma treatment and reduced lung function [53].
Recently, Al-Alwan et al. evaluated lung function by
conventional clinical tests and by impulse oscillometry
in female late-onset, non-allergic patients with asthma
and control subjects before, and 12 months after, bariat-
ric surgery [54]. Weight loss decompresses the lung in
both obese control subjects and patients with asthma,
but there was a significantly different response to weight
loss in patients with asthma compared with control sub-
jects, and this result lead the Authors to the novel
hypothesis that obese patients with asthma are distin-
guished from obese control subjects by having excessive
collapsibility of the lung periphery, perhaps as a conse-
quence of reduced distal airway wall stiffness.

Small airways dysfunction and asthma control
Takeda et al. performed IOS, spirometry, assessment of
health status (Asthma Quality of Life Questionnaire and
St. George’s Respiratory Questionnaire), dyspnea (Base-
line Dyspnea Index) and disease control (Asthma Con-
trol Questionnaire) in 65 patients with stable asthma
[55]. Small airway function as evaluated by peripheral
airway IOS indices, correlated better with clinical symp-
toms and asthma control than spirometry; furthermore,
greater small-airways reactance was associated with loss
of asthma control. Pisi et al. investigated the presence of
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SAD based on increased peripheral airway IOS indices
in 33 adult asthmatic patients with normal FEV1 values
[56]. Small airway dysfunction, as assessed by IOS and
spirometry, was associated with poor disease control,
assessed by the Asthma Control Test. Recently, Mano-
haran and Colleagues valuated adult asthmatics with a
preserved FEV1 (>80 % predicted) [57]. Spirometry and
IOS measurements were linked to prescription data. Per-
sistent small airway dysfunction, defined by FEF 25–75 %,

and R5-R20, was associated with a significantly increased
likelihood of having worse long-term asthma control.
The risk of having poorer control was greater when
measurements of FEF 25–75 %, and R5-R20 were com-
bined. These studies support the concept that in adult
asthmatics who have a preserved FEV1, a persistent
small airway dysfunction is associated with poorer con-
trol, perhaps suggesting the presence of a defined “small
airway asthma phenotype” characterized by individuals
with healthy values for conventional measures of pul-
monary function but poor control of disease and a dis-
proportionate amount of small airway dysfunction [58].
This situation is very common in childhood, where
FEV1 is generally normal, even in severe persistent
asthma [59]. Several studies in children have linked un-
controlled asthma to small airway function. Rao et al.
used The Children’s Hospital Boston Pulmonary Func-
tion Test database to compare matched groups of chil-
dren with asthma [60]. Subjects with a low FEF 25–75 %,

had a worse control of asthma and more exacerbations .
Shi et al. assessed 57 children with controlled asthma
and 44 children with uncontrolled asthma with spirom-
etry and IOS: they found that small airway IOS measure-
ments (R5–R20 and reactance area values) could
discriminate between patients with controlled and un-
controlled asthma, with a high sensitivity and specificity
of 84 and 86 % [61]. The sensitivities of spirometry out-
comes for assessing uncontrolled asthma were low, espe-
cially for FEV1 and bronchodilator responsiveness. In a
prospective follow-up study of the same group [62], chil-
dren with controlled asthma who have increased periph-
eral airway IOS indices (reactance area >0 · 70 kPa/L and
R5–R20 > 0 · 10 kPa/ l−1) are at risk of losing asthma
control.
Many studies assessed ventilation heterogeneity: in-

creasing unevenness of ventilation between different
lung regions is a sensitive marker of abnormal small-
airway function and can be measured noninvasively by
using the single-breath washout (increase in the phase
III slope, dN2) or multiple-breath washout techniques
(MBNW) [61–66]. MBNW is able to distinguish be-
tween ventilation heterogeneity generated in the con-
ductive lung zone (Scond) and ventilation heterogeneity
generated in the acinar lung zone (Sacin) [32]. Bourdin
et al. demonstrated that patients with more alveolar

heterogeneity, as determined with the phase III slope of
the single-breath nitrogen test (SBNT), have worse
asthma control [67]. Singer et al. assessed ventilation
heterogeneity with an easy tidal breath single-breath
washout (SBW) technique in school-aged children with
mild asthma and normal FEV1 and healthy age-matched
control subjects [68]. Abnormal acinar ventilation het-
erogeneity in one-third of the children suggests that
small airways disease may be present despite mild
asthma symptoms and normal spirometry. Farah et al.
demonstrated in a cross-sectional analysis of a large co-
hort that subjects with poorly controlled asthma had
worse ventilation heterogeneity compared with well-
controlled subjects [69]. Furthermore, during a period of
ICS treatment, the change in ventilation heterogeneity
predicted the change in asthma symptom control inde-
pendently of all other measured physiologic variables.
The same group demonstrated that ventilation hetero-
geneity predicts symptomatic improvement to ICS dose
up-titration and loss of symptom control during down-
titration [70]. Recently Thompson and Colleagues, using
the multiple-breath washout techniques (MBNW), dem-
onstrated that in patients with poorly controlled asthma
a functional abnormality in the acinar lung zone showed
a direct correlation with airflow obstruction and treat-
ment requirement [71].
With regard to peripheral inflammation, Van Vyve

et al. investigated inflammation in bronchoalveolar lav-
age (BAL) fluid [72]. Uncontrolled asthma was associ-
ated with a higher eosinophil percentage in BAL fluid,
suggesting involvement of the small airways.
Several studies in children and adults have demon-

strated that higher alveolar nitric oxide concentrations
are associated with the presence of worse asthma control
[72–76]. Corcuera-Elosegui et al. recently assessed 162
children with spirometry, exhaled NO at multiple flow
and asthma control questionnaire (ACQ): FEV1/FVC de-
creased significantly and morbidity was significantly
higher in asthmatics with elevated alveolar nitric oxide
concentrations [77]. Puckett et al. measured baseline
spirometry, bronchodilator response, eNO at multiple
flows (50, 100, and 200 ml/s) , asthma control and mor-
bidity in 200 children with asthma and 21 non-
asthmatic, non-atopic controls and divided children into
4 groups based on the concentration of alveolar and
bronchial NO: only categories with increase alveolar ni-
tric oxide concentrations were related to poor asthma
control and morbidity independent of baseline spirom-
etry, bronchodilator response, atopic status, or use of in-
haled corticosteroids. Scichilone and Colleagues utilized
the index of alveolar nitric oxide as a marker of small
airways inflammation in patients with mild asthma and
established that the level of disease control, assessed
using the asthma control test (ACT), was directly
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associated with peripheral airways inflammation: in un-
controlled asthmatic patients compared to controlled
patients, worsening alveolar nitric oxide concentrations
correlated with worsening ACT scores [79].

Small airway disfunction and asthma exacerbations
The focus of clinical practice guidelines for asthma [9, 10]
has shifted to include not only the conventional assess-
ment of symptoms, reliever use, and activity limitation but
also assessment of the patient’s future risk of adverse out-
comes, such as exacerbations, future poor asthma control,
accelerated decline in lung function, and adverse effects of
medications. Uncontrolled asthma symptoms substantially
increase the risk of exacerbations [80, 81], but data from
the European Network for Understanding Mechanisms of
Severe Asthma (ENFUMOSA) found that patients with a
history of near-fatal asthma in the past 5 years could not
be reliably distinguished from those with mild to moder-
ate asthma in stable conditions using common measures
of asthma severity and control [82]. Identification of pa-
tient’s risk profile is important to enable recognition of pa-
tients at high risk. Risk factors for exacerbations include:
history of severe exacerbation, uncontrolled asthma
symptoms, having ≥1 exacerbation in last 12 months,
low FEV1, incorrect inhaler technique and/or poor
adherence, smoking, obesity, pregnancy and blood eo-
sinophilia [83].
Accumulating evidence suggests that a higher degree

of peripheral airway dysfunction is associated with more
frequent asthma exacerbations. Rao et al. showed that
asthmatic children with a low FEF 25–75 %, had nearly 3
times the odds (OR 2.8, p < 0.01) of systemic corticoster-
oid use and 6 times the odds of asthma exacerbations
(OR 6.3, p > 0.01) compared with those who had normal
spirometry [60]. The Authors conclude that a low FEF

25–75 %, in the setting of a normal FEV1 is associated
with increased asthma severity, systemic steroid use and
asthma exacerbations in children. Pisi et al. investigated
the presence of SAD by IOS in asthmatic patients with
normal FEV1 values [54]. Increased R5–R20 values were
significantly higher in patients with asthma exacerba-
tions, when compared with patients without asthma ex-
acerbations. Two studies investigated the relationship
between ventilation heterogeneity and asthma exacerba-
tions; Bourdin et al. [67] showed that frequent (>2/y)
exacerbators have a higher degree of ventilation inequal-
ities (a sensitive marker of abnormal small-airway func-
tion), as determined with SBNT phase III slope, than
infrequent exacerbators (<2/y), whereas FEV1 percent
predicted values were comparable between these two
groups. Veen and Colleagues observed that difficult-to-
treat asthmatics with frequent disease exacerbations ex-
hibited enhanced airway closure (assessed as closing

volume and closing capacity) compared to equally severe
asthmatics without recurrent exacerbations [84].
In asthmatic children, Mahut et al. recorded forced ex-

piratory flows and plethysmographic lung volumes
(TLC, FRC, RV) before and after bronchodilation : air
trapping (higher RV and RV/TLC) was associated with
occurrence of a severe exacerbation during the last
3 months, suggesting a small airway disease that is not
evidenced by forced expiratory flows [85]. Imaging with
CT also allows assessment of small airways in obstruct-
ive pulmonary diseases [86]. High-resolution CT allows
direct assessment of large and medium airways (diam-
eter >2–2.5 mm), and indirect assessment of small air-
ways. Areas of mosaic lung attenuation on inspiratory
CT and air trapping on expiratory CT have been evalu-
ated as markers of small airways disease in both asthma
and COPD [87]. Busacker et al. assess with CT scanning
a subset of Severe Asthma Research Program subjects;
asthmatic patients with air trapping were significantly
more likely to have a history of asthma-related hospitali-
zations, ICU visits, and/or mechanical ventilation [88].
Duration of asthma, history of pneumonia, high levels of
airway neutrophils, airflow obstruction (FEV(1)/FVC)
and atopy were identified as independent risk factors as-
sociated with the air-trapping phenotype. Furthermore,
two studies in adults and children showed that patients
with increased alveolar NO levels more frequently had
visits to the emergency department, severe attacks, and
hospitalizations [77, 78].
As a predictor of future risk, increased BHR appears

to be, in children and adults with asthma, a significant
and independent risk factor for loss of control, asthma
exacerbations and development of irreversible loss of
lung function [89]. Several studies have demonstrated a
strong correlation between small airways dysfunction
and BHR. In a landmark study, Wagner et al., using a
fiberoptic bronchoscope wedged into a subsegmental
bronchus, demonstrated that greater peripheral airways
resistance was associated with more BHR to methacho-
line [90]. BHR can be present in subjects without any re-
spiratory symptoms. In 185 subjects, Segal et al. showed
that distal airway heterogeneity, as reflected by higher
R5–R20 and lower X5 values, was associated with
methacholine-induced symptoms despite absence of
change in FEV1 [91]. Boudewijn et al. investigated small
airway function assessed by spirometry and impulse
oscillometry, as well as Borg dyspnea scores at baseline
and during a methacholine provocation test in 15 sub-
jects with asymptomatic BHR, 15 asthma patients, and
15 healthy controls [92]. Small airway function (R5–R20
and X5 ) was comparable between subjects with asymp-
tomatic BHR and healthy controls, whereas asthma pa-
tients showed small airway dysfunction as reflected by
higher R5–R20 and lower X5 values. Beretta et al. used
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the IOS to gain information concerning the distribution
of hyper-reactivity along the bronchial tree during
methacholine challenge test [93]. For PD20 < 200 μg, a
remarkable frequency dependence was observed, with
increase in R5, no change in R20, and decrease in X5,
suggesting hyper-responsiveness of the distal airways
paralleled by a change in visco-elastic properties of lung
parenchyma. Several studies have suggested that small-
airways dysfunction is associated with more severe BHR.
Telenga et al. analyzed data from patients with mild-to-
moderate asthma: all patients were hyperresponsive to
histamine (PD20 < 9 mcg) [94]. Small airways obstruc-
tion was defined as a MEF 50 of less than or the same as
the lower limit of normal.The Authors found that small
airways obstruction is associated with the severity of
BHR in asthma, independently of FEV1. Downie et al.
analyzed, in 40 subjects with asthma, airway inflamma-
tion by exhaled nitric oxide, ventilation heterogeneity by
multiple breath nitrogen washout and BHR by metha-
choline challenge: baseline ventilation heterogeneity was
a strong predictor of BHR, independent of airway in-
flammation in subjects with asthma [95]. While a PD20
value is measurable in the vast majority of asthma pa-
tients during the methacholine challenge, a significant
ΔFVC% value is not always detectable in asthmatic pa-
tients. A fall in FVC suggests small airway closure and
gas trapping: excessive bronchoconstriction during BHR
testing is considered to be a very important pathophysio-
logical determinant in severe acute asthma exacerbations
[96, 97]. Furthermore, ΔFVC% correlated to asthma
treatment in adult patients and to the presence of symp-
toms in children with asthma [98, 99]. Recently, Alfieri
et al. provide the first evidence that in asthmatic patients
excessive bronchoconstriction expressed by ΔFVC% is
strictly associated to small airway dysfunction, as
assessed by IOS [100]. As compared to patients with
R5–R20 ≤ 0.030 kPa s l−1, patients with R5–R20 > 0.030
kPa s l−1 had a high likelihood to be associated to a
ΔFVC% greater than 14.5 % during a methacholine-
induced bronchoconstriction.

Effect of asthma treatment on small-airways function and
control of disease
Taken together, these findings support the view that dis-
tal lung is a very important target in any therapeutic
strategy for effective treatment. The inability to reach
and treat the peripheral airways may contribute to the
lack of efficacy of inhaled treatments. Several studies
have assessed the ability of both inhaled small particle
aerosols and oral treatments to target the distal airways
and improve physiological indices and levels of asthma
control. Anti-inflammatory treatment with inhaled corti-
costeroids(iCSs), with or without long-acting β2-
adrenoceptor agonists (LABA), is the cornerstone of

asthma management [9, 10]. The recent development of
inhaled extrafine formulations allows a more uniform
distribution of the inhaled treatment throughout the re-
spiratory tree to include the peripheral airways [101].
Extrafine formulations, with an mass median aero-
dynamic diameter (MMAD) of approximately 1 to
1.5 μm , have a higher lung deposition (50 to 60 %) than
coarse particle ICSs with an MMAD of 3 to 4 μm (10 to
20 %) and then penetrate more deeply into the periph-
eral airways than drugs delivered via traditional inhalers
[102–104].
Different biomarkers of peripheral airways are im-

proved by extrafine inhaled corticosteroids (beclometha-
sone, ciclesonide, flunisolide) in comparison with
equivalent non-extrafine inhaled formulations: ventila-
tion heterogeneity [105], peripheral airways resistance
[36, 106], BHR [107], alveolar nitric oxide concentrations
[108], late phase sputum [109], and peripheral airway air
trapping [110]. These improvements are associated with
better asthma control [111–113], higher health-related
quality of life [114–116] and better cost-effectiveness
[116], along with reduced systemic exposure to inhaled
corticosteroids [117], because comparable clinical effects
can be obtained with a lower amount of delivered com-
pound and with fewer unwanted effects .
Recently, the HFA-propelled extra-fine fixed com-

bination formulation of beclomethasone dipropionate/
formoterol (BDP/F) 100/6 μg has been developed
[101, 118] and represents the only extrafine combin-
ation in both the pMDI and DPI formulations devel-
oped thus far [118].
Because of the small particle size of BDP/F, the two ac-

tive drugs are delivered to both central and peripheral
airways, resulting in a uniform treatment of inflamma-
tion and bronchoconstriction [119, 120]. In asthmatic
patients BDP/F HFA significantly improved functional
parameters reflecting small airway obstruction in compari-
son with equivalent non-extrafine inhaled formulations :
forced vital capacity percent of predicted (%FVC, a simple
indicator of small airways involvement) [121, 122], ventila-
tion heterogeneity [123–125], peripheral airways resist-
ance [126], local airway resistance obtained from
computational fluid dynamics [127], BHR [124], and al-
veolar nitric oxide concentrations [127].
Huchon et al. showed that after 24 weeks of treatment

extrafine BDP/F delivered by an HFA pMDI (400/24 μg)
was superior in improving asthma control to the com-
bination of the same drugs formulated as larger nonex-
trafine agents at equipotent doses (1000 μg BDP +
24 μg F) [128].
This is in line with results of several real-life studies

[122, 129–132] showing that the use of extrafine-particle
HFA-beclomethasone/formoterol was associated with a
higher percentage of patients with well controlled
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asthma based on their Asthma Control Test and ACQ
scores than the use of non-extrafine combination treat-
ment. These improvements are associated with better
health-related quality of life [122, 130, 131] and cost-
effectiveness [132, 133]. Additionally, in most studies the
Authors observed that the mean daily dose of iCSs was
much higher for the large particle aerosols compared to
the small particle aerosols of BDP/Form. Brusselle and
Colleagues [134] have also shown that the benefits of
small particle HFA-solution BDP/F aerosols on improv-
ing levels of disease control in non-smoking patients
with asthma are also observed in asthmatic patients who
currently smoke, reflecting real-life clinical practice, as
often smoking asthmatic patients are excluded from ran-
domized controlled clinical trials [134, 135].
Taken together, these studies show that extrafine-

particle pressurized metered-dose inhalers might have
additional clinical benefits in the treatment of asthma
compared with coarse-particle treatment. Whether the
clinical superiority in terms of control can be related to in-
creased impact on distal lung abnormalities has not been
demonstrated by an appropriately designed clinical study.
Montelukast is a systematically administered leukotri-

ene receptor antagonist that reaches the small and large
airways [136]. Leukotriene receptors are differently
expressed in fibroblasts from peripheral compared to
central airways [137], which may explain a suggested
cysteinyl-leukotriene driven remodeling mainly in the
peripheral airways and possibly resulting in a predomin-
ant effect of montelukast on the small airways. Several
studies showed that biomarkers of peripheral airways are
improved by montelukast: peripheral airways resistance
[138, 139], air trapping [140–142], and alveolar nitric
oxide [138, 144]. There is suggestive evidence that a im-
provement in distal dysfunction/inflammation after
treatment with montelukast is associated with better
asthma control and asthma-related Quality of Life in
adults and children [138, 141–143].
Systemic parenteral treatment with omalizumab (an

anti-immunoglobulin IgE monoclonal antibody) is used
in selected patients with severe allergic asthma on treat-
ment step 5 of asthma guidelines [9, 10]. In a prospect-
ive, time-series, single-arm observational study [145], 31
adult patients with severe refractory asthma despite the
use of multiple controller medications, including high-
dose iCSs (1432 ± 581 μg/d of fluticasone propionate
equivalent), were enrolled. Alveolar nitric oxide
(CalvNO) levels and airway-wall thickness as assessed by
computed tomography significantly decreased at
48 weeks. Conversely, Pasha et al. did not find an associ-
ation between the placebo and treatment groups in over-
all CalvNO levels or in the changes of CalvNO with time
(may be for the initial low CalvNO levels in this asth-
matic population) [146].

Conclusions
Poor treatment compliance, failure to use inhalers cor-
rectly, heterogeneity of asthma phenotypes and associ-
ated comorbidities are the main contributing factors to
poor disease control [20–24], but there is now a consid-
erable amount of evidence supporting the concept that a
higher level of small airway disease is associated with in-
creased asthma symptoms, worse asthma control, more
severe bronchial hyper-responsiveness, and an increased
number of exacerbations [25]. Small-airways dysfunction
is not only a feature of severe asthma : distal inflamma-
tion and remodeling are present in patients with all se-
verities of disease [27–30]. Evidence is accumulating to
support a distinct, “small aiways”, clinical phenotype for
patients with uncontrolled asthma who have impaired
small airway function and conventional measures of pul-
monary function in the normal range [58]. There is also
suggestive evidence that, in some “clinical” asthma phe-
notypes, the small airways are more affected, including
nocturnal asthma, severe steroid-dependent or difficult-
to-treat asthma, asthma complicated by smoking, elderly
asthmatic patients and those with fixed airflow obstruc-
tion, and asthmatic children [147, 148]. Taken together,
these findings support the view that distal lung is a very
important target in any therapeutic strategy for effective
treatment. The randomized clinical trials reported to
date show that the extrafine and nonextrafine ICS for-
mulations have similar efficacy in terms of primary end-
points; however the availability of small-particle aerosols
enables a higher drug deposition into the peripheral lung
[102–104] and potentially provides additional clinical
benefits compared with large-particle treatment [147]. In
several studies a better small-airways response to treat-
ment with montelukast [142–144] or extrafine-particle
ICSs [111–113] and ICS/LABA combination [128–132]
is accompanied by better asthma control. Asthma is an
inflammatory disease affecting the whole respiratory sys-
tem, from central airways to lung parenchyma. Some pa-
tients have excellent control of disease with drugs that
partially reach small airways, probably due to the hetero-
geneity of airway inflammation/dysfunction , but post
hoc analysis of studies with non-extra-fine ICS/LABA
combination to evaluate possible effects on small airways
dysfunction are needed.
In addition to real-life studies, head to head (extrafine vs

non-extrafine) randomized controlled studies are needed
to evaluate whether changes in small-airway abnormalities
correlate with improvement in clinical outcomes. Simi-
larly, and even more importantly, clinical trials are needed
to evaluate whether extrafine formulations would repre-
sent a specific therapeutic option for specific groups of pa-
tients (“clinical phenotypes”) characterized by enhanced
small airway dysfunctions [148]. In summary, a proper
small airways diagnostic assessment in routine clinical
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practice with early recognition of small-airways dysfunc-
tion is essential for an optimal management of asthma,
particularly for early-stage diseases, when subjects are
often asymptomatic and routine pulmonary function tests
may be within normal ranges, and enables the physician
to start treatment targeting the bronchial tree from begin-
ning to end [149–151].
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