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In this paper, we propose an individual-level approach to diffusion and growth models. By zooming in, we
refer to the unit of analysis, which is a single consumer (instead of segments or markets) and the use of
granular sales data (daily) instead of smoothed (e.g., annual) data as is more commonly used in the literature.
By analyzing the high volatility of daily data, we show how changes in sales patterns can self-emerge as a
direct consequence of the stochastic nature of the process. Our contention is that the fluctuations observed in
more granular data are not noise, but rather consist of accurate measurement and contain valuable information.
By stepping into the noise-like data and treating it as information, we generated better short-term predictions
even at very early stages of the penetration process. Using a Kalman-Filter-based tracker, we demonstrate how
movements can be traced and how predictions can be significantly improved. We propose that for such tasks,
daily data with high volatility offer more insights than do smoothed annual data.
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1. Introduction
Monthly or weekly sales curves are often character-
ized by movements (trends), and changes in the curve
with what seems to be loud noise. Such noise in
sales or penetration data is typically handled through
data smoothing and larger time frames of analysis
(i.e., quarters or years). The term noise is often used
(in most fields) to reflect measurement tool error.
As measurement tools become increasingly accurate,
and information technology developments enable bet-
ter measurement, we can posit that what we see in
granular data is not noise, but rather the true face
of growth. One of the main claims of this research is
that volatility, perhaps surprisingly, contains valuable
information. Accordingly, we propose to step inside the
noise and use granular data instead of the more com-
monly used smoothed quarterly or annual data (see
Mabhajan et al. 2000; see also Putsis 1996 on how the
data frequency influences the estimations; monthly
data add little on quarterly). Taking this approach,
fluctuations can be used as information instead of
noise that has to be cleaned, enabling more accurate
postlaunch predictions at much earlier stages (i.e.,
right after introduction).

To illustrate our claim, consider Figure 1, which
presents the adoption rate (in units) of an e-mail

software! on an annual scale (Figure 1(a)), quarterly
scale (Figure 1(b)), and daily scale (Figure 1(c))
during its first 1,010 days of penetration into the
Indian market. Naturally, the annual penetration data
(Figure 1(a)) produce just two data points, revealing
very limited information on the temporal evolution of
the product’s penetration. When the scale resolution
is increased to quarterly penetration (Figure 1(b)), the
primary tendency of growth is more clearly shown,
wherein the apparent oscillations can be interpreted
merely as fluctuations of the adoption rates. However,
as can be seen in Figure 1(c), there are movements
(changing trends) in daily data that can hardly be seen
in the more aggregated data as in Figures 1(a) or 1(b).

It is not obvious at which time resolution the data
are best analyzed. The annual data (Figure 1(a)) offer
only two data points, providing scant insight, while
the daily data (Figure 1(c)) involve high volatility that
may appear to be noise. A possible compromise might
be waiting several years or using quarterly data that

! The software is an advanced e-mail program (“IncrediMail”) that
contains a useful toolbar, an interface that allows changes to the
outline of the e-mail, as well as programming and customization of
various alerts. The software itself was introduced in 2000 and since
then has become a recognized e-mail interface all over the world.
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Figure 1 Actual Penetration of a Software Product in (a) Annual Scale (b) Quarterly Scale, and (¢) Daily Scale
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offer enough data points to make forecasts based on
smoothing and fitting, yet are less noisy than the daily
data. But is this our best option?

In this paper, we show that the patterns observed in
Figure 1(c) are actually an inherent component of the
diffusion process of new products, and using granular
data (rather than smoothing it) offers a better way
to make predictions, as well as very early stages and
more accurate short-term forecasting.

The structure of the rest of the paper is as follows:
First, we discuss the motivation for using the pro-
posed approach in the case of new product adoption
and growth. Next we present a framework for synthe-
sizing both individual and aggregate levels in the most
general case into a universal modeling platform. In §3,
we show how penetration movements can be a result
of an intrinsic stochasticity of the process, and in §4,
we demonstrate how the proposed approach enables
us to perform better short-term penetration forecast-
ing (e.g., for the next quarter or two) as early as at the
beginning of the adoption process, using actual pene-
tration data. We conclude with a discussion in §5.

1.1. Background

Postlaunch evaluation of new product performance
based on sales data is an important tool frequently
used by firms to plan ahead for production and
marketing resource allocation. In their review of the

research on innovation, Hauser et al. (2006) cov-
ered research challenges in growth of new products,
emphasizing, among other things, the need for gener-
alizations of the S-shaped curve and turning points,
as well as determining how network effects influence
diffusion. This paper follows their recommendations
by focusing on the effects of social network structure
on the penetration stage.

One common problem shared by most approaches
used in this area is that the early stages of product
introduction do not necessarily fit into the diffusion
of innovation framework. Reviews of diffusion mod-
els (e.g., Parker 1994, Mahajan et al. 2000, Golder and
Tellis 1997, Tellis et al. 2003) find little use of growth
models around takeoff. This state of affairs might be
explained in several ways. First, modeling the ini-
tial phase of the postlaunch process may have rela-
tively limited efficacy; i.e., only a small number of
data points exist before takeoff. Indeed, Kohli et al.
(1999) argued that the Bass model, while excellent at
backcasting, is unreliable on its own for early life-
cycle forecasting. Related claims point to the lack of
data reliability prior to the completion of several peri-
ods of sales and the emergence of sales curve stabi-
lization (Heeler and Hustad 1980, Parker 1994). Our
proposed approach alleviates some of these concerns.

Furthermore, in the presence of volatility, which
is quite common during introduction stages, the
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search for explicit solutions for nonlinear differential
equations through linear approximations is often crit-
icized for its resulting multiple (dis)equilibria (e.g.,
Nijkamp and Reggiani 1998) and for failure to account
for discontinuities. Several studies have generalized
models of new product growth to capture the effect of
sales volatility by adding a stochastic term to the sales
dynamics equation (see, e.g., Boswijk and Franses
2005).

To track the mechanism through which new prod-
ucts penetrate the marketplace, several attempts have
been made to divide the total market into several
pieces and model the interactions between them. For
example, there is a growing consensus on the fun-
damental role that the structure of social networks
play in how information reaches consumers, chan-
nel members, and suppliers. This issue is particularly
important in the marketing of new products and the
creation of marketing collaborations (Iacobucci 1996,
Achrol and Kotler 1999, Rosen 2000). Recent attempts
have been made to directly tie social network prop-
erties to success in marketing activities such as pric-
ing or promotion strategies (Mayzlin 2002, Shi 2003).
Yet much of the empirical marketing research in this
area has focused on relatively small networks, for
example, intra- or interorganizational networks (see
Houston et al. 2004 for a review), tie strength (Brown
and Reingen 1987, Rindfleisch and Moorman 2001),
or social capital (Ronchetto et al. 1989).

A possible reason for this might be that in most
of the literature, for practical reasons, the market is
assumed to be homogeneous given that networks
and other more complex structures make model-
ing and estimation procedures much more complex.
For instance, uncovering market structures for new
product introduction in international markets (ie.,
“international diffusion”) is a research branch where
issues such as which market should be penetrated
first (i.e., countries with a higher connectivity level,
etc.) are of interest. Putsis et al. (1997) addressed
the question of how adoption in one country affects
adoption in others by uncovering the importance
of a mixing (interaction between countries) pattern
that is grounded in communication within and across
countries. While this is an important direction to pur-
sue, the size of the network used in that approach,
the empirical treatment (i.e., several dozens of nodes),
and the resolution (not at the consumer level; i.e.,
nodes are countries and not consumers) are rather
limiting.

Similar treatment of diffusion modeling and
networks can be found in the business-to-business
area. For example, Jones and Ritz (1991) suggested a
stage-based diffusion, with the organization first and
then the individuals within the organization (for a
different model, see Kim and Srivastava 1998). Here

again, the attempt is to add structure to the dif-
fusion model, yet the scale size is at a level of a
few units, thus preventing us from gaining signifi-
cant insight into consumer networks or those indi-
viduals who maintain a significant, large number of
social ties. In sum, lack of large-scale observations
and nonconsumer-level treatments are drawbacks of
attempts in this general direction of modeling.

Another important basis for the argument for con-
sumer segmentation in the diffusion literature is the
classification of consumers into various types of
adopters. Recently, Van den Bulte and Joshi (2007)
introduced a model of growth using two adopter seg-
ments: influentials and imitators. The former affect the
latter segment, yet not vice versa. This two-segment
structure with asymmetric influence is consistent with
several theories in sociology and diffusion research.

Other attempts to understand how networks affect
growth processes exist in the literature and are char-
acterized by an integrated, direct approach wherein
both the aggregate growth process and the individ-
ual level of the network are analyzed. Reingen and
Kerman (1986), for example, demonstrate that the role
of subgroups in referral to network flow is typified
by small social groups (see also Goldenberg et al.
2009). Brown and Reingen (1987) looked at word-of-
mouth (WOM) referral behavior in a natural environ-
ment. An interpersonal network was examined, and
the various roles and effects related to tie strength
were found. These findings, however, are limited in
the number of possible segments and do not focus
on individual customers. As such, the findings are
limited in their ability to directly refer to the exis-
tence and influence of consumer hubs. Nevertheless,
the rationale of these studies indicates that with richer
data, focus on the consumer as a unit analysis in the
model might lead to better understanding of such a
process.

Several studies have directly addressed the diffu-
sion process from an individual-level point of view.
Horsky (1990) introduced an individual-level model
describing a durable purchase decision made by a
utility-maximizing household, based on the house-
hold’s income, the benefits derived from the prod-
uct, and the product’s price. An aggregate demand
equation was then derived and shown to exhibit a
sales curve in a product life-cycle pattern. Chatterjee
and Eliashberg (1990) also presented a micromodeling
approach that explicitly considers the determinants of
adoption at the individual level. Consumers’ prefer-
ence structure was formulated by utility function in
a von Neumann-Morgenstern framework to encapsu-
late the potential adopters’ risk aversion. Eliashberg
et al. (2000) designed a decision-support system for
prerelease market evaluation of motion pictures based
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on a Markov process framework to estimate behav-
ioral factors such as WOM and movie-specific param-
eters. Reformulating the Bass model as a pure birth
process, Niu (2002) showed that the birth probability
of a new product adopter converges to the solution of
the Bass differential equation when the market con-
sists of identical consumers, and its potential goes to
infinity. These studies clearly highlight the potential
for modeling the diffusion process at the individual
level. However, none made use of granular data, nor
did they take into account the effects of networks on
the diffusion patterns. Therefore, neither the move-
ments nor how predictions can be improved by using
this characteristic have been addressed.

In this paper, we zoom in to a granular resolution
of data to better capture the individual-level unit of
analysis and develop a methodological framework.
Richer data and focus on the consumer as a unit of
analysis can alleviate some of the limitations of more
traditional models, as demonstrated in this paper.

2. The Methodological Framework

2.1. An Individual Analysis Framework

One of the objectives of this study is to analyze the
emergence of movements in firms” sales. Our analy-
sis is based on the idea of stochastic cellular automata
introduced by Goldenberg et al. (2001b), wherein the
probabilistic behavior of the individual consumer is
embodied by an agent-based model to simulate the
dynamics of new product growth. Along these lines
and unlike aggregate approaches, our unit of anal-
ysis is the individual consumer. Let s; be a binary
variable that represents the state of adoption of a
potential customer i. That is, s;(t) takes the value 1
if an individual i had adopted the innovation before
time t and O otherwise. We define the vector §(t) =
[s1(), s5(t), ..., s5p4(f)] as the market conditions vector
at time f, where M is the market potential. A customer
status change from a potential adopter to an actual
adopter is based on the transition from the state of
not-adopting yet to the state of adopting (a transition
from s;=0 to s; =1).

We postulate that the transition process between
potential adopter to adopter state is stochastic in
nature and occurs with time-dependent probabilities
n;(HAt (i=1,2,..., M), where n,(t)At is the probabil-
ity that individual i will adopt the innovation within
the time interval between the time indexes t and
t + At. These probabilities are determined by market
conditions that affect an individual’s decision whether
or not to adopt the innovation. The literature on new
product growth identifies two main forces that gov-
ern the penetration rate in such a case. These are
marketing efforts (also termed an external force) and
WOM (also termed an internal force and including

interactions between consumers such as referrals, imi-
tations, etc.). The external force that affects the poten-
tial adopter i can be represented by the probability
p;(t)At that this individual will adopt the innovation
within a time interval of At after the time ¢ because
of the influence of advertising and mass media. The
internal force that affects the potential adopter can be
represented by a set of probabilities g;(t)At, where
q;(t)At is the probability that a potential customer i
will adopt the innovation within a time interval At
after time ¢ as a result of WOM communication pro-
vided by customer j. It is a common assumption that
these forces are orthogonal. In this case, the transition
probability for an individual to adopt the innovation
within a time interval At after the time ¢ is given by

ni(HAt =1 —[1—p;(HAL]-T][1 - g;(t)At]
i

- [m(t)+Zqﬁ<t>]At+O<<At>2>. &

i

This equation is a generalization of adoption and
growth mechanisms, and it is consistent with previ-
ous studies (e.g., Goldenberg et al. 2001a, Garber et al.
2004). These probabilities are conditional in nature
and in general depend on the relevant history of the
entire market dynamics (i.e., time dependent). More
formally, the transition probabilities can be defined as

At =n,(t| Q,)At, (2)

where Q, = (5(t), S(t — At),...,5(0)) is the history
of the past market condition vectors. For example,
under the assumption that the transition probabilities
depend only on the current market state vector §(t)
via WOM communications and where only an adopter
can influence another potential one, Equation (1) can
take the form

mi(t| QA = n,(t] S(t))At

= <Pi(t) +Zwij(t)sj(t)>At, 3)

Jj#i

where s,(t) is the jth component of the market con-
dition vector §(t) and g;(t) = w;;(t)s;(t), so that w;(t)
is the probability per unit of time that potential
adopter i will adopt the innovation because of WOM
influence produced by customer j, who had already
adopted the new product.

The probability of a potential adopter deciding to
adopt the innovation within time interval At after a
certain time period, f, can be also expressed in terms
of transition probabilities. Given (},, the history of the
past market condition vectors in a given time, ¢, the
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probability that an individual i will be an adopter at
the time t + At is

1 if 5,(t) =1,
Pr(si(t + At) =1 | Qt) = (4)
n.(t| Q)AL if 5,(t) =0.

Because our interest is exploring the dynamic process
of penetration of the new product into the market-
place, we define a transition index of purchasing for
a potential customer i as

As;(t) =s;(t + At) — s;(t) )
to obtain the purchasing conditional probability,
Pr(As;(t) =11Q) = (1 —si()mi(t[ )AL, (6)

where Pr(As;(t) = 1| Q,) is the probability that a
potential customer will adopt the innovation within
the time interval between t and t + At, given the rel-
evant history of the market dynamics at the time ¢.
Since As; is a binary variable, Pr(As; = 0) =1 —
Pr(As; = 1) is also true. Alternatively, we can also
rewrite Equation (6) to obtain the transition index:

As;(t)
1 with probability (1 —s;(t))n;(t | Q,)At,

0 otherwise.

The transition indices of purchasing As;(t) are stochas-
tic variables in nature and can be considered indepen-
dent, as if the time interval At is set to a very small
value in which the probability of potential adopters to
communicate with adopters is limited. The resulting
WOM effect to induce purchasing during the short
time period At becomes negligible.

2.2. An Aggregate-Level Point of View

The first step in bridging between the micro- and the
macropoints of view is to define the noncumulative
penetration of the new product. This will be the num-
ber of individuals who have adopted the innovation
within a given short time interval At after a certain
time ¢ and can be expressed by the sum of all indi-
vidual transition indices of purchasing the product
such that

Am(t) = %Asi(t). )

The noncumulative penetration is a stochastic
variable and consists of the sum of independent
binomially distributed variables. Given the history of
the past market condition vectors ), at time t, the
noncumulative penetration mean and variance can

be derived. Under the assumption that simultane-
ous purchases are uncorrelated within a short time
interval At, the mean is given by

M
Ain(t]€Q,) = E(Am(t) | Q)= _(1-s;())n(t|Q,)At, (9)

i=1
and the variance is

a?(t| Q) = E([Am(t) — Am(1)]* | )

= At [ Q) = 3 (1—s,()[mi(t] Q)AL

_ ARt Q)+ O(%[Aﬁ(t | n»F), (10)

where E(. | ;) denotes a conditional expected value
given the history ), of the past market condition vec-
tors at the time ¢.

The next step is formulating the aggregate-level
dynamics of a new product growth. For that purpose
we construct a dynamic equation of the new product
penetration that is governed by the sum of all mar-
ket forces (externals and internals), which affect each
individual in the marketplace. These market forces
determine the probability of adoption of each poten-
tial consumer and are defined by the sum of the
conditional probabilities of adoption per unit of time
over all potential adopters in the market. This sum is
equivalent to the average penetration rate, so the net
market force at time t can be written as

F, )= 300y ) = 2212

, 1
i=1 At an

and the dynamics of the noncumulative penetration
can be described by

Am(t) =F(t, Q)At +&,, (12)

where g, is uncorrelated noise with mean zero and
variance determined by the net market force. That is,
the following conditions are satisfied: E(g, | €,) =0,
E(ef | Q) = F(t, Q)At, and E(giep | Q) = e,E(e; |
Q,) =0 for t > '. Note that given Q,, a past noise
term g, (where t' < t) is already determined and has
a fixed value.

The actual net market force F (Equation (11)) is
defined as a function of (), the history of the past
market condition vectors. These vectors should con-
tain individual-level information and, as a result,
impose a significant restriction on the applicability of
such a modeling approach; as such, data are seldom
available. Nevertheless, we can use Equation (12)
(noncumulative sales) and rewrite it to come up with
the following expression with partial information:

Am(t) = F(t, Q,)At +u(t), (13)

where F(t, Q) is the model of the net market force
which estimates the actual net market force F on the
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basis of the partial information Q,. In contrast, the
term u(t) denotes the actual noise, or stochasticity, of
the process and is given by

u(t) = (F(t, Q,) — E(t, Q,)At + &, (14)

where the first and second moments of the penetra-
tion rates” actual noise satisfy the following relations:

E(u(t)| Q,) = (F(t, Q) — E(t, Q))At,  (15)
E(u(H? | @) = E(t, Q,)At
+(E(t, ) —E(t, Q)AL (16)

and
E(u(t)u(t’) [ Q) = u(t)E(u(t) | Q). (17)

Note that the past noise term u(t’), where t' <t
is already determined, is fixed at the present
time t. The actual noise contains all the relevant
microlevel information that has not been (or cannot
be) modeled. Since, in general, E(u(t) | ,) # 0 and
E(u(t)u(t')| Q,) #0 for time indexes t and t, where
t > t/, the actual noise in the noncumulative pene-
tration usually becomes biased and correlated. As a
result, strong coupling effects can be observed in the
sales curve. These effects can be interpreted as large
fluctuations or trends in sales—our argument for the

Figure 2
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internal emergence of penetration tends. Specifically,
the noise can be a result of either or both systematic
(i.e., a change in the trend of the penetration func-
tion) and nonsystematic (i.e., fluctuations resulting
from various market or individual conditions). That
is, modeling the actual net market force F exhibits
a trade-off. The simpler and hence the less microin-
formative the model of the net market force f, the
more significant the impact of the noise u in produc-
ing large fluctuations and changing trends in the pen-
etration data.

In sum, through aggregation of a microscopic ap-
proach (also known as agent-based modeling), we get
a collective behavior; i.e., we developed a general
framework wherein the penetration can be modeled.
In that context, we demonstrate in the appendix the
use of the proposed framework as a general mod-
eling tool for the process of new product adoption,
while deriving the fundamental Bass model as a
special case.

3. Self-Emergence of

Penetration Movements
Various types of penetration patterns can be observed
when analyzing the noncumulative penetration of
innovative products. To illustrate, consider Figure 2,
wherein data of four cases of penetration of the e-mail

The Actual Daily Penetration of an E-mail Software Product in Four Different Markets: (a) Argentina, (b) India, (c) Poland, and (d) Sweden
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software tool in various countries are shown. The
noncumulative penetrations are presented in a daily
time frame for Argentina, India, Poland, and Sweden
during the 1,010-day period from September 1, 2000
to June 7, 2003. A primary tendency of increas-
ing adoption rates is evident in all the cases. Sec-
ondary movements, however, can also be observed.
For example, in Argentina (Figure 2(a)), chapel-like
patterns of about 100-200 days” width each climb
over the increasing primary movement of adoption
rates. In the case of India (Figure 2(b)), changing
movements (trends) in the penetration curve form
shapes that look like pointed minarets and can be
observed in intervals of several hundred days. An
abrupt jump can be identified in the Polish pene-
tration curve (Figure 2(c)), and the moderate mono-
tonic increase in penetration in the Swedish market
(Figure 2(d)) is almost suddenly replaced by steep
growth that reaches its peak before experiencing a
steep decline. Regularities in the patterns of penetra-
tion can also be visually identified in shorter time
periods on the scale of dozens of days.

3.1. Study 1: Analysis of the Empirical
Relationship Between the Volatility
and Mean of the Adoption Rates
To obtain the mean and standard deviation of adop-
tion rates, we retrieve empirical measures and statisti-
cal estimators for these variables in a given averaging
time window.

Let {Am(t)} be the series of daily adoption rates
of a new product such that Am(t) is the number of
purchases that occurred during a time period of one
day after time t. Then, for any given time f, we can
calculate the following statistical estimates:

Adn(t) = % Af Am(t+ AAt) (18)

A=0

and

1 A-1 = 1/2
a(t) = [E > (Am(t+ AAL) — An_d(t))z} , (19

where Af7i(t) and &(t) are the estimators for the mean
and standard deviation of the noncumulative pene-
tration data, respectively. In the data we analyzed, the
time interval is At =1g,,. The averaging window AAt
determines the time scale, such that below this win-
dow’s size any observed oscillation of the penetration
data can be considered fluctuation.

We assume that during a short time interval (one
day) simultaneous purchases are independent; thus
Equation (10) can be used to describe the relation-
ship between the adoption rates” mean and standard
deviation. We therefore replace the expected values

Table 1 The Noncumulative Penetration Volatility vs. the
Noncumulative Mean of Penetration of the Tested Software
Tool—Fitting Results

Country A o R?

Argentina 1.12 [0.76,1.51] 0.63 [0.55,0.71] 0.667

India 1.11 [0.86, 1.42] 0.65 [0.60,0.71] 0.833

Poland 0.95 [0.75,1.19] 0.63 [0.57,0.69] 0.794

Sweden 1.50 [1.00,2.26] 0.55 [0.46,0.64] 0.517

by their statistical estimates and obtain the following
approximation:

(1)~ (Am(t)"? (20)

In our empirical validation, for each data set we use
an ordinary logarithmic regression of the form

a(t) = A(Am(1))", (1)

where the regression coefficients are predicted by
Equation (20) tobe A=1and a = 3.

The goodness-of-fit results of this estimation pro-
cess are given in Table 1, where the averaging win-
dow parameter A was taken to be 10, such that
AAt =104,y In general, it can be seen that our loga-
rithmic regressions nicely fit the data. The R* values
vary from 0.52 to 0.83, with an average of 0.7. The
regression coefficients usually lie around their pre-
dicted values. Yet it is reasonable that Equation (20)
underestimates the penetration volatility. The power
«a is approximately 0.6 instead of the expected 0.5, and
the factor A tends to be larger than 1. (The coefficient
errors were calculated for a 10% significance level as
if the regression residuals are normally distributed.)

There are two main reasons for the effective expan-
sion of the penetration volatility. First, we assume
that the net market force is constant within the aver-
aging window time period (i.e., adoption rates are
generated by the same distribution). This assumption,
however, does not consider possible short-term move-
ments during the averaging window time period.
Such movements might occur even within such short
time intervals because of the exact timing of prod-
uct purchases (e.g., weekend versus midweek sales),
sudden changes in the collective market behavior
because of external effects (e.g., a reaction to break-
ing news or rumors in the media), or a firm’s actions
(e.g., promotions). Second, violation of the simulta-
neous purchase independence assumption that forms
the basis for Equations (10) and (20) can be another
source for expansion of sales volatility. For exam-
ple, a market that consists of a social network of
relatively small groups (i.e., segments), wherein the
social relations are very strong, can produce highly
correlated purchases of the new product. In the next
study, we demonstrate this phenomenon by using an
agent-based model.
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3.2. Study 2: Demonstration of the Process of
Movements Creation via the Stochasticity of
the New Product’s Growth

This study will is to show that the emergence of
changes in sales trends can be a fundamental feature
of a product’s penetration into the marketplace and
does not necessarily have to be a result of external
influence. Such movements can be found even in
homogeneous markets with fixed market forces. We
studied the apparent difference between the deter-
ministic-continuous and the stochastic-discrete analy-
ses of such a process by using analytical calculations
as well as numerical simulations.

For illustration purposes, we consider the simple
case of a market comprised of identical consumers.
We also consider the market to be constructed by
several segregated submarkets of consumers having
social links.? We further assume that the social inter-
actions among individuals within the same submar-
ket are much stronger than those among individuals
coming from different submarkets.

The market consists of M consumers (i.e., M is the
market potential), where each consumer can purchase
the innovation just once. The market is segregated
into N submarkets, where M, denotes the number
of individuals within the vth submarket. To simplify
our analysis, we further assumed that all submar-
kets are of the same size (i.e., for any submarket, v,
M, =(1/N)M).

External force. For any individual i there exists
a probability p,;(t)At of being influenced by exter-
nal forces (e.g., advertising) to adopt the innovation
within a short time interval At after time t. (p;(t)
denotes a probability per unit of time.) We assume
that these probabilities are identical (equal) for all con-
sumers and do not vary with time (i.e., p;(f)At =pAt
for any individual i).

Internal force. Among any individual pair i and j,
a probability g;;(f)At exists that individual j who has
already adopted the product will interact with and
influence individual i to adopt the innovation within
a short time interval At after time t as a result of
WOM communication (g;(f) denotes a probability per
unit of time). We assume that social links among indi-
viduals are identical and fixed. We consider two types

2Qur definition of submarket is similar to a network, albeit more
general. We do not use the term “network,” as networks are gener-
ally viewed as clusters with strong ties inside. Our model, however,
does not follow exactly the definitions of strong and weak ties,
because they are not required for this purpose. A submarket is a
group that posteriori can be viewed as an “activated network.” The
overall effect of both strong and weak ties is taken into account as
a complete adoption process inside this group. The summation of
all groups comprises the overall adoption process. From this per-
spective, some groups can be connected geographically (as shown
already in the literature), whereas others can be connected through
other channels of information.

of social links: intrasubmarket links (i.e., representing
the strong social relations between two individuals
in the same group, depicted by a probability con-
stant g,At) and intersubmarket links (i.e., representing
the weak social relations among individuals belong-
ing to different social groups and expressed by a
probability constant g,At, which generally satisfies:
doAt < g,At). That is to say, ¢;(t)At#0 only in a
case where individual j has purchased the innova-
tion until time t. In that case, g;(t)At =gq,At, when
both individuals i and j are part of the same social
group and, hence, are connected via intrasubmarket
link and g;;(t)At = q,,At otherwise (when they belong
to differing social groups and are tied by an intersub-
market link).

We can now derive the individual’s transition prob-
ability from a nonadopting state to an adopting state.
Let i be a potential adopter who belongs to the vth
submarket. Then, the probability that an individual
will adopt the innovation within the time interval that
lies between t and t + At is given by Equation (1) as
follows:

n;(H)At =1~ (1—py(HAL) - [(1 - q;(t)At)
j#i

=1—(1=pat)(1 - gA0"™ 0 (1 — g, A1)~
= 0" (t)At, (22)

where m,(t) is the number of individuals in the vth
submarket who had already adopted the innovation
by time t and, hence, denotes the cumulative amount
of sales in the vth submarket through that time t. The
value of m(t) denotes the entire market’s cumulative
sales, where m(t) = YN | m,(t).

Next, we calculate the net market force applied on
the vth submarket at time t. This net market force is,
by definition, given by Equation (11) and is repeated
here as

E(h)= % (1-s(H)m ). (23)
ieSM,,

SM, denotes the class of individuals belonging to
the vth submarket, and s;(f) is the ith individual’s
state of adoption. Because all the transition probabili-
ties within a certain submarket v are equal, substitut-
ing (22) in (23) yields

()
R = (= me0) 0

= (5 -m)

1= (1= pAD (L = A" (1 = g, Aty

At !
(24)
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where N is the number of submarkets and M is the
total market potential. We can now use the pene-
tration dynamics equation (Equation (12)) to obtain
the noncumulative penetration dynamics in the vth
submarket

Am,(t) = A, (t) + &,(t). (25)

Here, Ami,(t) is the mean value of the adoption rate
at time t within the vth submarket and is given by

Aifi (t) = E, (t)At. (26)

The term ¢,(t) denotes the stochasticity of the pro-
cess. It represents an uncorrelated noise with a mean
of zero and standard deviation approximately given
by the square root of the noncumulative sales aver-
age (i.e., E([&,(1)]?) ~ Ain,(t)). Specifically, each one of
the noncumulative penetration variables Am (v =1,
2,...,N) is composed of Am, positive outcomes that
have been taken from a sample of M/N — m, iden-
tical binary random variables, where each positive
outcome occurs with a probability of n”At. Thus
according to our model, the noncumulative penetra-
tion variables Am, are binomially distributed and
hence the noise terms are ¢,(v=1,2,..., N) drawn
from a shifted binomial distribution.

To obtain further insight into the dynamics of new
product growth, we first look at the deterministic part
of the dynamics of this process. Here, we omit the
noise terms and set the problem to the continuous
limit (i.e., taking the short sampling interval At to
zero). In this case, for any submarket v, Equation (25)
becomes an ordinary differential equation of the form

dm,(t)
= E1), (27)
where

M
B0 (5~ ) (04 (= gm0+ gm0
(28)
If the initial time t =0 is the time of the new product

launch, we can solve the following N ordinary differ-
ential equations system:

dm,(t)
dt

= <% - mv(t))(P + (4, — o)1, () + q,m(1)),  (29)

where m(t) = YN, m,(t) and the initial conditions are
m,(t =0)=0 for v =1,2,...,N. As the dynamic
equations are identical for all submarkets as well as
the initial conditions, we can deduce that the solu-

tions are identical for all the submarkets. As a result,

m(t) = 2ot (30)

for any submarket v. It follows that if we substitute
relations (30) in Equation (29), we find that under
the deterministic-continuous limit of our model, the
dynamics of penetration are given by the Bass model

DO _ - mp(p+ G, @
where Q:M(%qﬁr(l—%)%)’ (32)

and P = p. Thus, taking only deterministic consid-
erations in our model into account, we expect the
evolution of penetration to exhibit the traditional
bell-shaped curve with a single peak at time t* given
by the Bass equation solution. Furthermore, Equa-
tion (32) predicts a similar effect on adoption rates for
interactions of individuals of both within a submarket
and between different submarkets. According to the
deterministic analysis, the main difference between
these two types of interaction is merely quantitative.
That is, alternating the intensity of the intersubmarket
link g, is equivalent to N —1 times stronger modifi-
cation of the intrasubmarket link g,.

We now examine the influence of the inherent
stochastic process on the evolution of the sales pro-
cess. To this end, we used an agent-based simula-
tion (see, e.g., Goldenberg et al. 2002) and define
M binary variables (agents) to represent the state of
consumption of each individual in the simulated mar-
ket. We also classify those variables into N equal-
sized classes to designate N submarkets of equal
size. The state values of consumption are updated
via iterated probabilistic dynamics defined by the
individual-level probabilities of adoption presented in
Equation (22). In each iteration, we realize the tem-
poral evolution of the adoption rates in the market
during a short time period of length At. The exter-
nal influence probability pAt, as well as the internal
influence probabilities within and among submarkets
g,At and q,At, respectively, are fixed parameters of
the simulation.

Figure 3 illustrates the influence of stochasticity on
the process of new product growth, where the result-
ing penetration curves of six numerical realizations
are presented. Six choices of the external influence
parameter pAt, the intrasubmarket, and the intersub-
market links g,At and g,At were used. Each realiza-
tion emulates the temporal evolution of penetration
in short sampling intervals (say, days) in a mar-
ket consisting of M = 10° consumers, classified into
N =1,000 equal-sized submarkets. Unlike the predic-
tion of the deterministic-continuous analysis of this
process, some of the presented cases do not exhibit the
traditional bell-shaped curve. There are cases wherein
the new product penetration dynamics create an oscil-
lating pattern of penetration (see, e.g., Figure 3(a)).
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Figure 3
the Multisubmarket Configuration
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In other cases, changes in penetration trends are car-
ried as secondary movements on a primary decreas-
ing line (see, e.g., Figures 3(b) and 3(d)). The existence
of other than bell-shaped patterns in a homogeneous
and stationary market is the sole result of the stochas-
tic nature of the purchasing process.

The results of the stochastic effects on the process
of new product growth are depicted by the temporal
evolution of penetration in various submarkets that
are no longer identical. Recall that the dynamics of
penetration in a certain submarket v as presented
in Equation (25) include a provision for the stochas-
ticity of the process by including the noise term.
Naturally, the noise terms ¢, of various submarkets
v=1,2,..., N usually differ from one another. Thus,
the values of the noncumulative penetration Am, and
therefore those of the cumulative penetration Am, are
not identical in all submarkets.

Similarly, the net market forces in various submar-
kets at a given time f also differ, because they di-
rectly depend on the cumulative penetration values
(see Equation (24)). Thus, the diversity of various
growth forms is extended even further. In contrast,
when assuming a deterministic motion, all submar-
kets evolve through the same dynamic process and,
as a result, exhibit an identical curve. This curve is

Demonstration of the Process of Penetration Movements’ Creation: Curves of Six Numerical Realizations of an Agent-Based Simulation of
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produced by typical Bass dynamics, as indicated by
Equation (31).

The stochasticity of the process impacts the dynam-
ics of new product growth in two primary ways.
First, it breaks the simultaneity of the temporal evolu-
tion of adoption rates in various submarkets: various
smaller submarkets respond according to differing
launch times. In general, a specific submarket can
exhaust its sales potential before initial adoption of
the product has started in another submarket. As a
result, the dynamics of adoption rates in the entire
market may exhibit changes in penetration move-
ments. Furthermore, stochastic effects may produce
movements even when the processes evolve simul-
taneously in differing submarkets. The dynamics of
new product growth are multiplicative. Specifically,
the larger the number of customers who have already
adopted the innovation within a certain submarket,
the larger (on average) the number of customers who
adopt the innovation at present time t in the pene-
tration stage of the new product. (This property is
straightforwardly derived from the structure of the
net market force applied on a certain submarket v
at a given time t that determines the mean value of
the noncumulative penetration as shown by Equa-
tions (24) and (26).)
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Consequently, initial differences in adoption rates
in differing submarkets that were originally triggered
by stochastic effects increase by the multiplicative
dynamics of the new product’s growth. Penetration
within submarkets wherein the initial number of indi-
viduals who adopted the innovation was high by
chance alone, will reach their peak faster than will
sales within submarkets with a low initial number
of adopters. Such cases will lead to market-level
penetration patterns that may hold several maximum
and minimum values.

Let us now identify the effects of each of the pro-
cess parameters. Figures 3(a)-3(c) illustrate the effect
of external parameter pAt on the dynamics of mar-
ket sales, and present the penetration curves of the
isolated submarket’s case. Specifically, there are no
interactions among individuals from differing sub-
markets, so the intersubmarket links are nullified
(i.e., gq,At=0). The intrasubmarket links are equal
and are given by g,At =10"*. The range of the exter-
nal parameter pAt varies from 10~ to 107°. As our
iteration interval emulates daily sampling, those val-
ues are analogous to annual rates of the P-parameter
in the range of 0.000036 to 0.0036. When the value
of pAt is small, the adoption rate fluctuates upward
and downward, displaying an oscillating pattern (see
Figure 3(a), where pAt = 107*). Gradually, when the
value of pAt increases, a primary declining move-
ment in penetration is revealed (see Figure 3(b), where
pAt=107°) that becomes the traditional bell-shaped
curve (as shown in Figure 3(c), where pAt =107°).

To obtain more insight into the resulting patterns,
we recall that when external parameter is pAt large,
a high probability exists of the new product simulta-
neously penetrating into numerous submarkets. Once
pAt is very small, the probability of a given submar-
ket being activated at a given time is very small, and
only a few submarkets will be active at the same
time. Under such conditions, a number of peaks can
be found because penetrations in differing submar-
kets are effectively evolved serially. In the case of
large pAt, the growth process tends to evolve simul-
taneously in more than several submarkets, and we
begin observing the traditional bell-shaped curve.
This is the result of the relationship between the
stochastic and deterministic terms. As the stochas-
tic term becomes smaller relative to the deterministic
component, the bell-shaped sales curve emerges.

Figures 3(d) and 3(a) together depict how the
ties among individuals within the same submarket
affect the penetration dynamics throughout the mar-
ket. Here, the intrasubmarket link is weaker (i.e.,
g,At =107° instead of g,At =107*), as in Figure 3(d).
It can be seen that the duration of the change in
sales trends develops into longer patterns (from an
order of 100 iterations when gAt = 10~*, to about

1,000 iterations when g,At =107°). A primary move-
ment that indicates a gradual decline in sales becomes
apparent, and the variance of the fluctuations in the
process becomes large. This is the result of a decrease
in the intrasubmarket link that slows the evolution of
penetration into each submarket.

The lifespan of each submarket, therefore, is
extended, as are the sales trends. Furthermore, the
lower the number of intrasubmarket links, the higher
the number of “active” submarkets at any given
time. Thus, the effect of breaking the penetration
simultaneity discussed earlier is reduced, and a
decline in the primary line of sales appears. The
increase in the variance of the fluctuations is a result
of the combined effect of a decrease in each market’s
mean value of sales because of the decreasing effect
of the internal force (i.e., word-of-mouth communica-
tion) and concurrent processes in many submarkets.
The total sum that defines the noncumulative pene-
tration of the entire market, therefore, is composed
of a higher number of noisy terms in relation to the
number of “active” submarkets, where the standard
deviation of each one approaches the mean.

Of particular interest is the comparison between the
apparent penetration curves in Figures 3(d) and 3(e).
Instead of considering the assortment of isolated
submarkets, we used very weak social ties among
individuals coming from differing submarkets. The
intensity of g,At =107"? the intersubmarket link is
defined for the Case 3E to be rather than zero, where
all the other parameters remain identical. Surpris-
ingly, the resulting impact on the pattern of penetra-
tion that follows this tiny change is significant. The
gradual decline of sales when submarkets are isolated
(Figure 3(d)) is replaced by a well-defined primary
movement with a global peak (Figure 3(e)).

This phenomenon underscores the effect of stochas-
ticity on this process. If we take only deterministic
considerations into account, both cases should exhibit
the same curve. As mentioned earlier, both the intra-
submarket links g, and the intersubmarket links g,
affect the dynamics of penetration via the WOM coef-
ficient Q given in Equation (32). Substituting the
appropriate numerical values of the parameters for
both cases (i.e., M =10° N =10° and g,At =107
in the two cases; g,At =0 in Case 3D; and g,At =
1072 in Case 3E) yields the same WOM coefficient
QAt =1072. Namely, the deterministic analysis cannot
distinguish between intrasubmarket and intersubmar-
ket link effects.

In reality, the intrasubmarket and the intersubmar-
ket interactions play differing roles in the dynamic
process of the new product growth. The intrasubmar-
ket interactions generate local correlations among rel-
atively small groups of consumers that may produce
short movements as well as noticeable fluctuations.
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Conversely, the intersubmarket interactions form
global correlations among all individuals. In other
words, the more intense the intersubmarket links, the
more dependent the penetration processes in differ-
ing submarkets. In the case presented in Figure 3(d),
individuals from differing submarkets cannot inter-
act with one another, so the sales in each submarket
grow independently. As time passes, the number of
“active” submarkets is reduced (because they already
exhausted their sales potential one by one), lead-
ing to a gradual decline in sales. When intersubmar-
ket interactions exist, the evolution of penetration in
any particular submarket is no longer independent
of the development of the processes in other sub-
markets. This phenomenon is demonstrated in Fig-
ure 3(e). The formation of a global peak and the
diminishing of movements imply that differing sub-
markets have the tendency to aggregate and become
a single unit. The implied practical implication is that
product penetration into a specific submarket almost
instantaneously accelerates its penetration into other
submarkets. A further increase in intersubmarket link
intensity yields a convergence of the pattern of pene-
tration of a typical Bass curve.

Figure 3(f) illustrates the case wherein the entire
market is considered a single homogeneous unit (i.e.,
no difference between intrasubmarket and intersub-
market interactions). The intensity of the social ties
among all individuals is identical. The probability
that during a time period Atf, an individual will
interact with and be affected by the WOM of an
adopter is gAt. That is, g,At = q,At = qAt, as pre-
sented in Figure 3(f) for gAt =1078. Hence, the global
WOM coefficient is calculated by Equation (32) to give
QAt = MgAt =102 (note that M is the entire market
potential, where M =10° and gAt =107®). The exter-
nal parameter is defined as pAt =10~ and so is the
global external coefficient. As intuitively expected, the
pattern of penetration presented in Figure 3(f) exhibits
a Bass-type curve, wherein the time of the peak is
measured in exact accordance with the solution of the
Bass equation, and is given by

1 At
= In(Q
pAt+QAt  \ PAt

)At% 1,150At, (33)
and the value of the adoption rate at peak is

o M 2.

Am(t") = 1007 (PAt+ QAt)*~2,500. (34)
Identifying such patterns in real life can help man-
agers take action to transform patterns such as those
in Figures 3(a), 3(b), 3(d), and 3(e) into more success-
ful patterns (such as those in 3(c) and 3(f)). Of all six
cases, clearly Case C is a rapid, smooth process with
a fast takeoff, which offers the highest net present

value (NPV) of all. From a managerial point of view,
the implication is fairly straightforward: there is prob-
ably no need for action. However, there could be a
question of efficiency: if marketing investments are
high, the firm may be able to increase profits by de-
creasing these investments. When a rapid takeoff and
a smooth process are observed, it is recommended
that this option be tested.

In contrast, Case D may be the one with the lowest
NPV. Although smooth, because of high WOM activ-
ity, the left tail (time to takeoff) is long. Consistent
with diffusion literature (e.g., Mahajan et al. 2000),
this is an indication for a low external force (p).
In such a case, the firm should explore options to
increase marketing efforts, or their efficiency in induc-
ing trails. The good news is that in such a case, after
takeoff emerges, there is no need to invest further in
marketing because the internal force completely takes
over.

In the rest of the cases, movements are intrinsic.
Case A, although it does not necessarily represent a
failure, shows a rapid takeoff that quickly turns into
an oscillation-based progression curve. The NPV in
this case is relatively low, and the extremely large
fluctuations may introduce supply chain management
problems. Increasing the external force (p) by mar-
keting efforts can help shift this pattern into the one
observed in Case B, which is better for the firm in
terms of NPV. If a firm can launch a buzz program
focused on weak ties, this case can also be shifted to
a faster process.

Cases D and E may be the closest to failures.
When the small-scale fluctuations are so frequent (in
sales charts we should see something similar to a
thick brush stroke), this might be an indication for
managers to consider “pulling the plug on the prod-
uct drain.” According to research on management fail-
ures (Boulding et al. 1997, Biyalogorsky et al. 2006),
managers are typically too late in decision making
to stop the marketing process of a failure. Perhaps
such indication could offer an early signal to consider
this option, as this could become a case of losses to
the firm.

3.2.1. Conclusions. This study demonstrated the
process of movements’ emergence in penetration data
by means of the intrinsic stochasticity in the dynam-
ics of new product growth. These movements may
appear as a consequence of strong local interactions
among individuals within social groups. Generally
speaking, they last for relatively short time peri-
ods. We showed that strengthening the interactions
among people from differing social groups can dra-
matically affect the pattern of penetration by assur-
ing and accelerating the appearance of a global peak
of sales. This finding may influence management
to enhance the formulation of intersocial relations
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among adopters and potential adopters who are
part of differing social circles. We also demonstrate
the strength of the stochastic nature of the process
through the occurrence of changes of movements in
both homogeneous and stationary markets. Naturally,
in the general case of a heterogeneous market, the
appearance of trends becomes even more explicit.

We have shown that by shifting the focus to indi-
vidual-based data, we can understand the dynamics
and behavior of what we used to call noise when
using daily or any other granular data. For some
products, granular data mean hours, for others it may
be weeks; the point is that when we understand the
mechanisms and behavior of these movements, we
can use them instead of cleaning them. Recent devel-
opments in information technology allow managers
to get shorter time intervals of data, thereby mak-
ing the proposed approach more relevant for man-
agers making new product introduction decisions.
The most straightforward application can be using
the granular data to make predictions. By taking into
account that nominal penetration is not a monotonic
line, but rather an oscillative one, we can develop a
more sophisticated model that can use this pattern
instead of smoothing it. This approach appears to be
most beneficial when a firm is interested in short-term
predictions (e.g., quarters), right after launch, where
annual smoothed data do not yet exist.

We now turn to examining empirically how pre-
dictions of penetration dynamics can be improved,
taking into account that the stochastic emergence of
movements is an intrinsic part of the penetration
process.

4. Empirical Analysis: Detecting,
Tracking, and Forecasting

Movements
We started with an analysis of the individual-level
based model to come up with a stochastic aggregate-
level model. We then demonstrated that penetration
movements can be the result of endogenous stochastic
processes using an agent-based simulation modeling
approach. In this section, we empirically demon-
strate how the evolution of current movements can
be identified and tracked, and how correct identifica-
tion can significantly improve predictions. To address
this issue, we used a Kalman Filter-based tracker
(see, e.g., Blackman 1986, Bar-Shalom and Li 1993,
and the Technical Appendix, which can be found
at http://mktsci.pubs.informs.org, for more technical
details). The apparent advantages of Kalman-Filter
estimation of new product diffusion models have
already been discussed by Xie et al. (1997), wherein an
augmented Kalman filter with continuous state and
discrete observations (AKF(C-D)) was implemented

to overcome time-interval bias effects, while estimat-
ing the dynamics of new product adoption based
on differential diffusion models. Kalman filter proce-
dure was also used to handle the case of dynamic
brand preferences that are based on a number of time-
varying types of product lines (Sriram et al. 2006). As
the goal here is to track movements that are stochas-
tically emerged and generally last for relatively short
periods of time, we actually focus only on short-term
forecasting. Furthermore, as we use granular (daily in
this case) data, we may apply quite accurate linear
approximations of the dynamic process that standard
Kalman-filtering estimation techniques fit well.

The main objective of the proposed tracker is to
constantly monitor the data and provide an estima-
tion of the rate mean and its temporal derivative. The
use of data sampled at a high frequency together with
the intention of conducting a relatively short-term
forecast allows use of the Taylor series expansion of
the rate mean value within the current trend. Namely,
the predicted progression of the averaged penetration
rate after a period of time T is approximated by the
following equations:

x(t+T)=x(t) + T x (t) (35)

and
x (t+T)=x(t), (36)

where x(t) is the penetration rate mean at the time ¢
(i.e., x(t) = dm(t)/dt where mi(t) is the mean value
of the cumulative penetration at the time t) and
x=dx/dt. The track state vector, which estimates the
values of x and x, is updated in an adaptive manner
by the tracking procedure using the actual noisy pen-
etration measurements alongside the model predic-
tions given by Equations (35) and (36). Note that the
origin of the noise in the observed penetration rates is
not, or at least not necessarily, rooted in measurement
errors. It occurs because of the stochasticity within the
penetration process itself, in the sense that the exact
values of the actual adoption are not equal to their
expected values. Naturally, as long as the new prod-
uct adoption is developed consistent with a specific
trend pattern, the temporal derivative of the penetra-
tion rate mean x varies slowly. In contrast, a sudden
alteration of the current existing trend will generate
considerable changes in the values of the penetra-
tion rate average and its temporal derivative x and
x, respectively. The tracker is designed to detect and
quantify those changes and reinitialize the track state
vector, if necessary. Note that unlike the prediction
of traditional models (e.g., Bass), changing trends can
stochastically create several local peaks in the penetra-
tion rate curve. Therefore, a negative sign of the pen-
etration rate mean derivative x at present time does
not enforce negativity in the future.
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Figure 4 Visualization of the Tracker’s Forecasting Capability in Four Typical Scenarios
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In our empirical validation, we fine-tuned the track-
er parameters by applying a trial-and-error search for
each one of the data sets. We chose two sets of param-
eters for each case study. One set is suitable for track-
ing the movement of a short time scale, while the
other set can fit into longer time scale movement esti-
mations, which we define as intermediate movement
tracking. Sensitivity analysis indicated that the tracker
performance is robust to small changes of its system
parameters.

In Figure 4, we present four typical scenarios of
actual observed daily penetration to depict the fore-
casting capability of the tracker. A thick vertical line
divides each figure into two parts to mark the cur-
rent present time. Early penetration data are used as
a calibration period for future forecasting. The curve
starting to the right of the line denotes the future data
to be evaluated and is hence unknown for the estima-
tion process.

As already mentioned, each case is examined in two
different tracking modes: a short movement tracking
mode and an intermediate movement tracking mode.
The upcoming predictions of the short and intermedi-
ate sale movement trackers are depicted by the thick
solid and dashed lines, respectively. We also present

the tracker forecasts in comparison with the predic-
tions of three benchmark models described below.
The apparent tradeoffs in using differing modes of
tracking are depicted in Figure 4.

The short movement tracker is very sensitive to
small-scale changes in the current trend. Loss of track-
ing, therefore, can occur, as can be seen in Figures 4(a)
and 4(b). As a result, a short-term (local) decrease
in the penetration rate might be interpreted as a
final decline in the product life by the short move-
ment tracker (see Figure 4(a)), while sharp short-term
variations can distract the track of the penetration out
of the primary movement line (see Figure 4(b)). Such
undesirable effects can be minimized if an intermedi-
ate movement tracker is used that is characterized by
a tendency to stay on the path of the primary pene-
tration movement. It may therefore reduce the impact
of local peaks on the dynamic evolution of the repre-
sentative track (see Figure 4(a)) and hold back abrupt
variations (see Figure 4(b)). Those restraints, however,
can slow the learning process of new trend patterns
by the intermediate movement tracker. In contrast,
high susceptibility is what allows the short move-
ment tracker to quickly identify and adapt to new
trends. These features are well demonstrated in Fig-
ures 4(c) and 4(d). The slope of the future increasing
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penetration is more accurately evaluated by the short
movement tracker, while the intermediate tracker suc-
ceeds in tracking those rapid trend changes but only
“in delay.”

Next, we compare the performances of the tracker
to three well-known penetration forecasting methods
serving as benchmarks for goodness-of-fit measures
of the forecasts. The motivation for this comparison
is neither to evaluate nor to argue for or against
these methods. All three methods were developed
with annual data and smoothing strategy in mind,
and their goal is not short-term prediction at early
stages, for which our proposed model was developed.
However, because these methods are foundations of
penetration forecasting, they can serve as benchmark
models for this approach on its own terms. The
absence of other models developed for this particular
purpose also led us to select the best-known models.
The three models selected as benchmarks are there-
fore as follows:

(1) The Bass model. A nonlinear least-squares
(NLS) estimation using past penetration data to ob-
tain the parameters of the Bass model according to the
procedure suggested by Srinivasan and Mason (1986).
Accordingly, a straightforward extrapolation of future
penetration was conducted commensurate with the
solution of the Bass equation. The Bass benchmark is
displayed by a thin dashed curve in each of the fol-
lowing figures.

(2) The nonuniform influence model. The non-
uniform influence (NUI) model was introduced by
Easingwood et al. (1983) and is considered to be an
advanced and more realistic one. This model takes
into account the fact that the WOM effect does not
remain constant over the entire diffusion process and
enables the appearance of asymmetrical diffusion pat-
terns around the stage of maximum adoption rate.
In this benchmark, we used an NLS estimation using
past data to evaluate the parameters of the NUI
model, which we used to predict the penetration in
the future. The NUI benchmark forecasts are dis-
played by thin solid curves in each of the following
figures.

(3) A learning Bayesian estimation. Here, we
have applied the maximum a posteriori estimator via
Bayes’ formula to extract the penetration coefficients
from past penetration data following Lenk and Rao
(1990). Those coefficients were later used for future
penetration forecasting. Rather than evaluating the
prior distributions of the Bass model parameters
across various products (see Lenk and Rao 1990),
we obtained the prior distributions through a prior
estimation of the past penetration data itself, using
the confidence intervals for the coefficients of the
fit results, which were assumed to be normally dis-
tributed. The posterior distribution of the observa-
tions was assumed to be normal with means given by

Bass model interpolations and with known variances
at any given time. Those variances are derived
from the standard deviation estimators of our high-
frequency sampled data, as we use daily data. Given
that we use the penetration information itself, the pre-
diction should be more accurate than Lenk and Rao’s
(1990) model, which does not assume the existence of
such information. The learning Bayesian-benchmark
forecasts are displayed by a thin dash-dot line in each
figure.

Comparing the forecasts of the proposed adaptive
movement tracker with the predictions of the three
benchmark models, it appears that changes in the
penetration pattern are difficult to follow on the basis
of a strict Bass or NUI modeling. This difficulty is
mainly attributed to the restriction of having only one
maximum in the penetration curve. Thus, an observed
(local) peak in past data (see Figures 4(a) and 4(c)) or
a curvature alteration of the primary movement from
a convex to a concave form (see Figures 4(b) and 4(d))
may be interpreted as reaching the area of the single
maximum. As a result, forecasts in such cases tend
to underestimate future penetration. The tracker, by
contrast, is designed to adopt the dynamic changes
in the current trend by using a dynamic weighting
procedure of the incorporated observations in its rep-
resentative track, thereby providing better forecasting
in such cases.

Figures 5 and 6 provide a quantitative evaluation
of the proposed movement tracker in its two track-
ing modes as compared to the predictions of our
three benchmarks. Figure 5 presents the four cases of
penetration of the e-mail software tool (presented in
the introduction) in four markets: Argentina, India,
Poland, and Sweden. Figure 6 presents the perfor-
mance evaluation of the tracker vis-a-vis the three
benchmarks using three additional data sets of movie
rental records. The data were collected between
October 1998 and December 2005 from approximately
480,000 customers in a daily resolution.

Figures 5 and 6 display an R-square measure for the
goodness of fit of the cumulative predictions of the
models (the tracker and the benchmarks) as a function
of the prediction range. For example, R?(100) rates the
ability of a specific forecasting model (e.g., Tracker,
Bass, or NUI) to predict the total depth of penetra-
tion over the coming 100 days. The R-square mea-
sure may be referred to as the proportion of variation
explained by the model. Thus the closer the value of
the R-square measure to one, the better the forecasts
of the model. The vertical line around a prediction
range of 50 days in each case stands for the maximal
range wherein the short movement tracker predic-
tions are better than those of the intermediate move-
ment tracker. The solid R-square curve in each case
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Figure 5

The R-Square Measures for the Goodness of Fit of the Cumulative Predictions of the Models (the Tracker and the Three Benchmarks) as a

Function of the Prediction Range for the Four Case Studies: (a) Argentina, (b) India, (c) Poland, and (d) Sweden
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designates the goodness of fit of the forecasts pro-
duced by the short (intermediate) movement tracker.
The thin dashed and dash-dotted R-square curves
describe the goodness of fit of the Bass model pre-
dictions and Bayesian estimation procedures, respec-
tively. The thin solid R-square curve designates the
goodness of fit of the NUI model predictions.

The results indicate that the tracker in both its track-
ing modes exhibits superior future cumulative fore-
casts. With the exception of the Argentinean market
of the e-mail software tool during a relatively small
range of 30 to 70 days (see Figure 5(a)), the tracker
predictions of future cumulative penetration are sub-
stantially more accurate in all prediction ranges (up
to 300 days) in all seven cases. These results become
stronger following the drop in the values of the
R-square measures of the Bass and the NUI models’
predictions in intermediate ranges.

In general, the tracker can provide good forecast-
ing results in ranges between 100 and 200 days. For
the e-mail software tool data sets, the tracker provides
R-square measures in a prediction range of 200 days
of about 0.4 in the cases of Argentina and India and
0.6 in the cases of Poland and Sweden, while the

measures of the Bass and the NUI approximations
drop to zero in all the markets.

In the first and the third data sets of movie rental
records (see Figures 6(a) and 6(c)), the tracker car-
ries out predictions with R-square measures of 0.7
and 0.6, respectively, in the 200-day range. In con-
trast, the benchmarks (NLS-Bass and NUI) produce
R-square values of about 0.3 in the first and the third
movie rental record data sets. In the second movie
rental record data set, the R-square measure of all the
models drops to zero in a 200-day prediction range,
yet the tracker still achieves the better forecasting
results.

Interestingly, although the NUI model fits better
than the Bass model with past data, it does not exhibit
better predictions in some of the cases. Again, this may
be because of the impact of the changing movements
in the pattern-of-adoption rate. That is, the estimated
parameters of the models (Bass and NUI) provide
averaged values, but essentially these parameters are
not constant when we zoom in to high sampling reso-
lution (e.g., daily) as movements in penetration exist.
Moreover, because both the Bass and NUI models
denote growth processes, their predictions are very
sensitive to deviations and biases in their parameters’
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Figure 6  The R-Square Measures for the Goodness of Fit of the Cumulative Predictions of the Models (the Tracker and the Three Benchmarks) as a
Function of the Prediction Range for the Three Data Sets of Movie Rental Records
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values. The NUI model appears more sensitive to
movements when using granular data because it takes
into account changes in internal influence over time. In
contrast, the tracker is almost by definition more toler-
ant of and adaptive to dealing with changing trends.
Apparently, when zooming in to granular data, either
much more sensitivity to movements or a complete
ignorance is needed.

5. Discussion

The main premise of this work is that the dynam-
ics of the fluctuations in penetration curves can be
informative. This study deals with two important
issues occasionally faced in innovation management:
identifying penetration patterns (i.e., distinguishing
between movements and fluctuations) and forecasting
future sales in early stages of product life.

By zooming in on the individual consumer and on
the time periods (i.e., daily sales data and early part
of the product life cycle), it is possible to add mean-
ingful information for analysis. We propose a univer-
sal modeling platform that can capture the stochastic
nature of sales dynamics that at the same time allows
for aggregating individual behavior. To this end, gran-
ular data are used to come up with a short time

(i.e., daily), individual-level model. Stepping into the
noise inherent in short time data enables the emer-
gence of movements that can be understood by con-
sidering this noise as meaningful information.

Overall, we demonstrate that differing sales pat-
terns can exist even when the market is composed
of identical consumers, and that these differences are
embedded in the various inter- and intragroup social
ties. We do not argue that exogenous events do not
occur or cannot cause sales movements. However, we
show that even without external events, these move-
ments occur quite often. We also argue that this fre-
quent occurrence is in fact the natural and standard
penetration pattern when looking at granular data.
By taking this phenomenon into account, better pre-
dictions can be made.

Based on the concept of focusing on daily sales
data, a sales tracker was developed and shown to pro-
vide fairly accurate predictions even at early stages
of the penetration process, whereas models that use
more coarse-grained data cannot operate. More pre-
cisely, the current approach enables us to obtain
predictions of future growth just a short time after
launching a new product. For long-term predictions,
at a later stage, this approach does not provide
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any advantage over other standard methods. Pre-
dicting future short-term sales, however, has impor-
tant managerial implications, as it can provide better
management of production and inventories such that
potential lost sales or excess inventories will be min-
imized. Such prediction capabilities are particularly
important in light of the ever-shorter product life
cycle in many industries, e.g., personal computers,
wherein the life cycle of many components is between
one and two years (e.g.,, Kurawarwala and Matsu
1996).> Furthermore, other industries, such as ser-
vices, are leaning toward personalized interactions
(Rust and Chung 2006) and therefore stressing the
need for individual (granular)-based models.

An important question is how robust the model is
to errors resulting from data that are not at the indus-
try level. While the first study used penetration data
of a unique product, and the data can be considered
a good proxy for an industry level, the second study
used a clear case of partial data (firm level). In addi-
tion, the data we have contain only a subset of all the
data. The results indicate that despite such a limita-
tion, the proposed model works well, and its predic-
tions are relatively high.

The proposed framework and modeling approach
lay the groundwork for further research. Extending
the current model to account for repeat purchase
goods is a natural step that can provide meaningful
insight into the emergence of sales trends. Another
avenue for future research might focus on identifica-
tion of opinion leaders and their effect on other con-
sumers through social ties.
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Appendix. The Bass Model as a Private Case of the
Proposed Universal Framework

In this appendix we use the proposed universal framework
to derive the well-known Bass model as a special case.

3 Other early frameworks for prediction are offered by the litera-
ture. For example, Garber et al. (2004) used spatial density of sales
as additional information to make a significant contribution to the
early prediction of product success. According to this approach, a
measure of the distance of the sales density from a uniform func-
tion is highly correlated with success. However, the dependent
variable using this approach was a dichotomy of success versus
failure, and there was no indication as to what the sales curves in
the next periods would look like.

Consider the case in which only a person who had
already adopted the innovation can apply word of mouth
on his or her environment. We substitute the transition
probability for any individual i given in Equation (3) in
Equation (11), the net market force, to obtain

M M
F(L, Q) ~ 3 (1=s(t) (Pi(t) +2 wij(t)sj(t)> . ©7)
8 =
where p;(t) is the probability per unit of time that poten-
tial adopter i will adopt the innovation because of external
influence (e.g., advertising); w;;() is the probability per unit
of time that an individual i will purchase the innovation as
result of the WOM communicated by individual j, who has
already adopted the innovation; and s;(t) is the ith individ-
ual index of consumption.

Let us further assume that the intensity of the WOM
communications among individuals as well as the external
influence on potential adopters does not vary with time and
is identical for all consumers. That is, the market is consid-
ered to be stationary and homogeneous. In that case, the
net market force can be rewritten as

M M
F(1,9)~3 (1 —Si(f))(P+wZSj(t)>, (38)

i1 j=1

j#1
where p denotes the probability per unit of time that a cus-
tomer will be persuaded by an external influence to adopt
the new product, and w expresses the probability per unit
of time that a potential adopter will interact with an actual
adopter of the innovation and will also be affected by his
or her WOM. We define

M
m(t)=)_si(t) (39)
i=1
as the total cumulative sales. Then applying the approxima-
tion Z]-Ail s;(t) ~ m(t), Equation (38) takes the form
j#1

F(, 20~ En() = (= m(o) (p+ om0

where P =p and Q = Mw are the macroscopic coefficients of
the external and the internal influence, respectively. In other
words, we approximate the interaction among individuals
via the mean of the consumption indexes m(t)/M. As can
be seen, the partial information on which our model of the
net market force is based on is the total cumulative sales,
namely, Q, =m(t).

After modeling the net market force, we can now use
Equation (12) of the sales motion to describe the dynamics
of sales for new product sales, as follows:

Am(t) = ((M — m(t) (p + %m(t)))At Fu(). (41

As a special case, we can set Equation (22) to the contin-
uous limit, while neglecting the stochastic effects of the pro-
cess to obtain the following ordinary differential equation,

dm(t)

PO —-my(p+gm0), @)

which is the Bass equation (Bass 1969).
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