

Testability Concept and Development on the EuroFighter

Paul Gatland

14 August 2012

What is Testability?

A design characteristic which allows the status (operable, inoperable, degraded) of an item to be determined and the isolation of faults within the item to be performed in a timely manner

- Characteristic of the design
- Enable determination of item status
- Facilitates testing and diagnostics

What is EuroFighter?

Role	Multirole fighter
Manufacturer	Eurofighter GmbH
First flight	27 March 1994
Service introduction	4 August 2003
Status	In service
Primary users	Royal Air Force (160) Luftwaffe (143) Italian Air Force (96) Spanish Air Force (73) Austrian Air Force (15) Royal Saudi Air Force (72)
Number built	300 as of October 2011 (559 ordered)
Unit cost	£64.8 million (Tranche 1 & 2) €72 million (Tranche 3)

Testability Overview

Testability underpins the following equipment RAMS requirements:

- Safety Compliance (e.g. Integrity requirements, Safe Failure Fraction, dormancy, time at risk)
- Maintenance Requirements (e.g. MTTF, MTTR, fault isolation)
- Availability Requirements (e.g. MTBF/(MTBF + MTTR)

Testability Tasks

The following are the testability tasks required by the EuroFighter development programme:

- Testability Specification(s)
- Failure Catalogue (an extension to the FMECA)
- Testability Analysis
- Testability Demonstration

Testability Specification(s)

The following are the testability specifications required by the EuroFighter development programme:

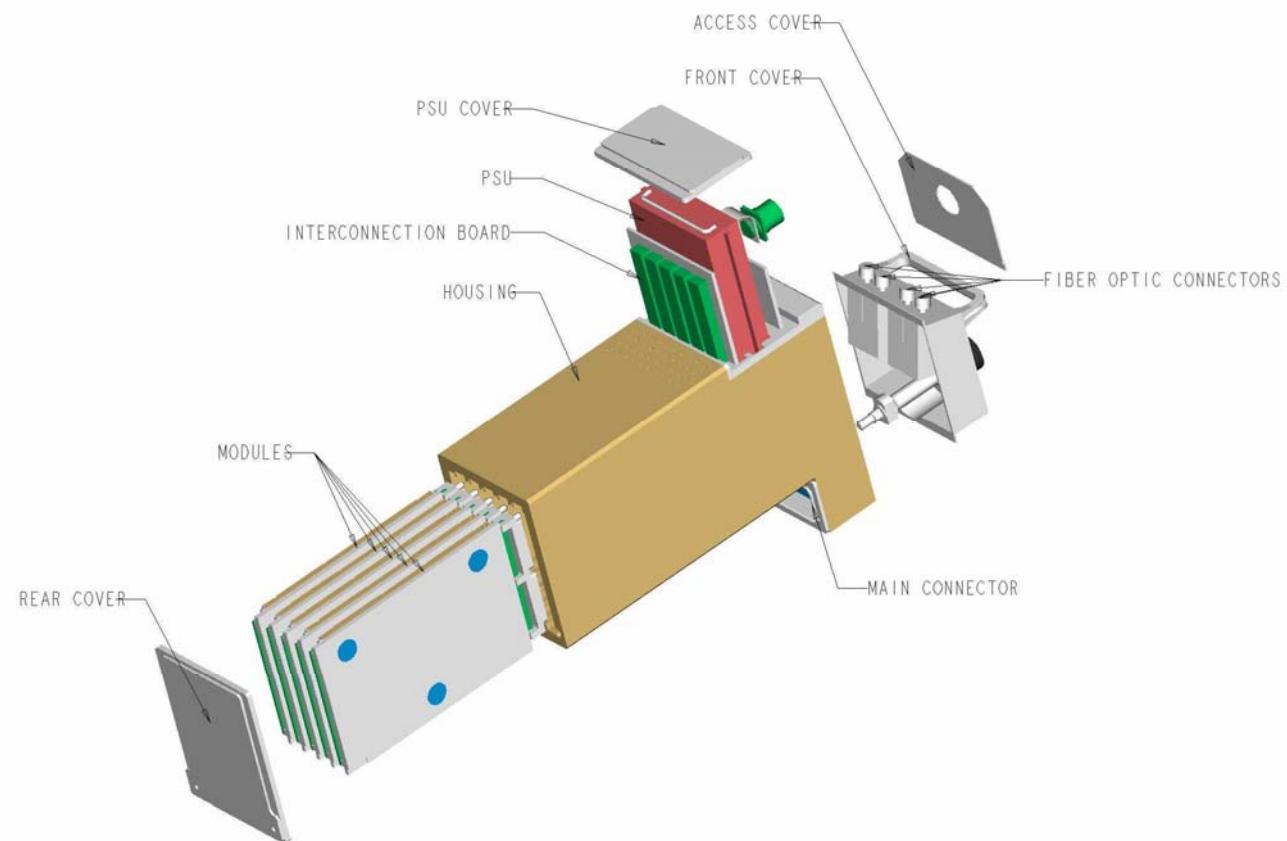
- Built-In Test (BIT) Concept
- BIT Specification(s)
 - LRU Level
 - Module Level
- LRU Test Requirements Document (TRD)
- Module Test Requirement Document(s) (TRDs)

Built-In Test Concept

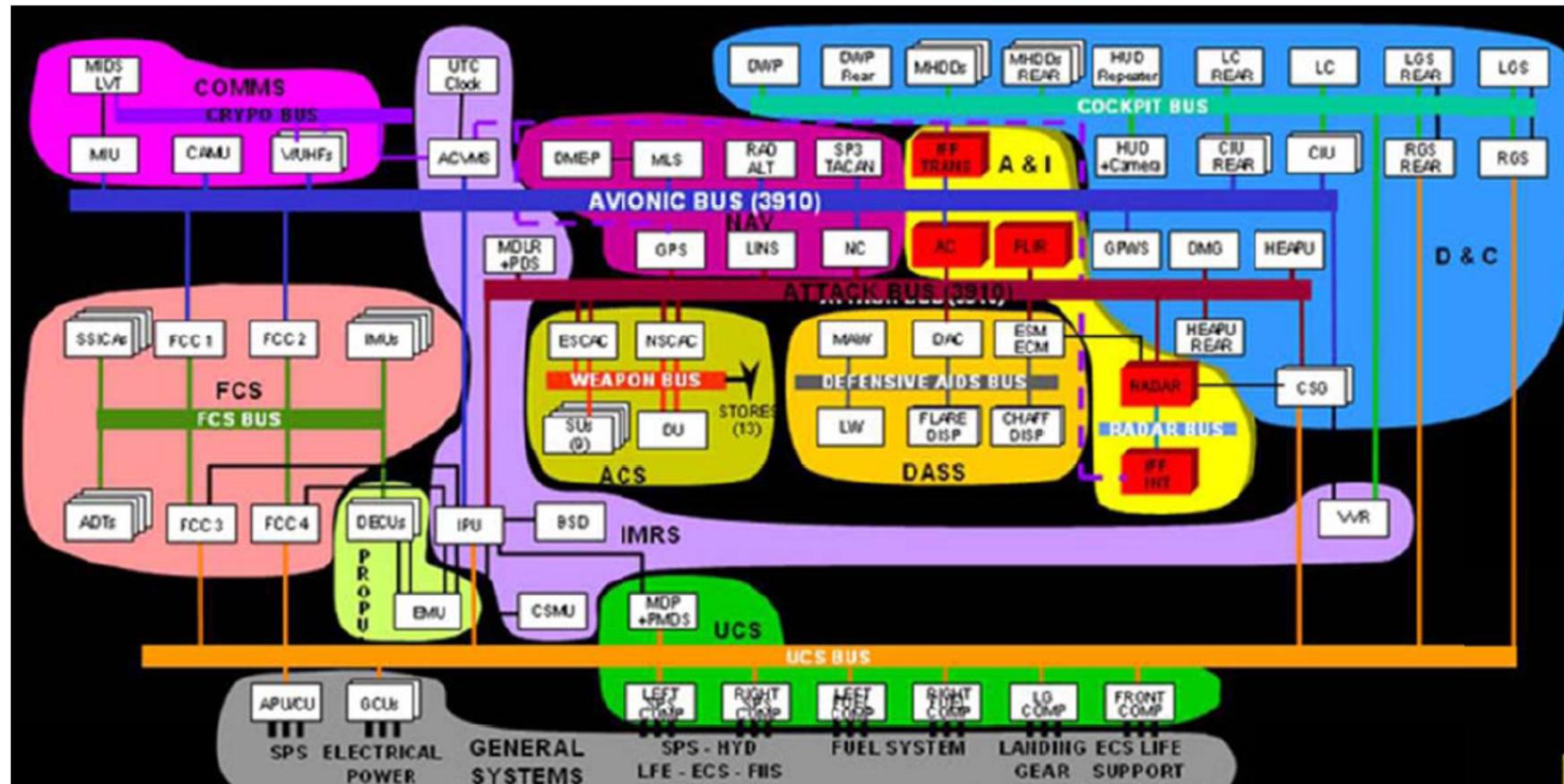
Each avionic Line Replaceable Unit (LRU) provides:

- Power-On BIT (PBIT)
- Continuous BIT (CBIT)
- Initiated BIT (IBIT)

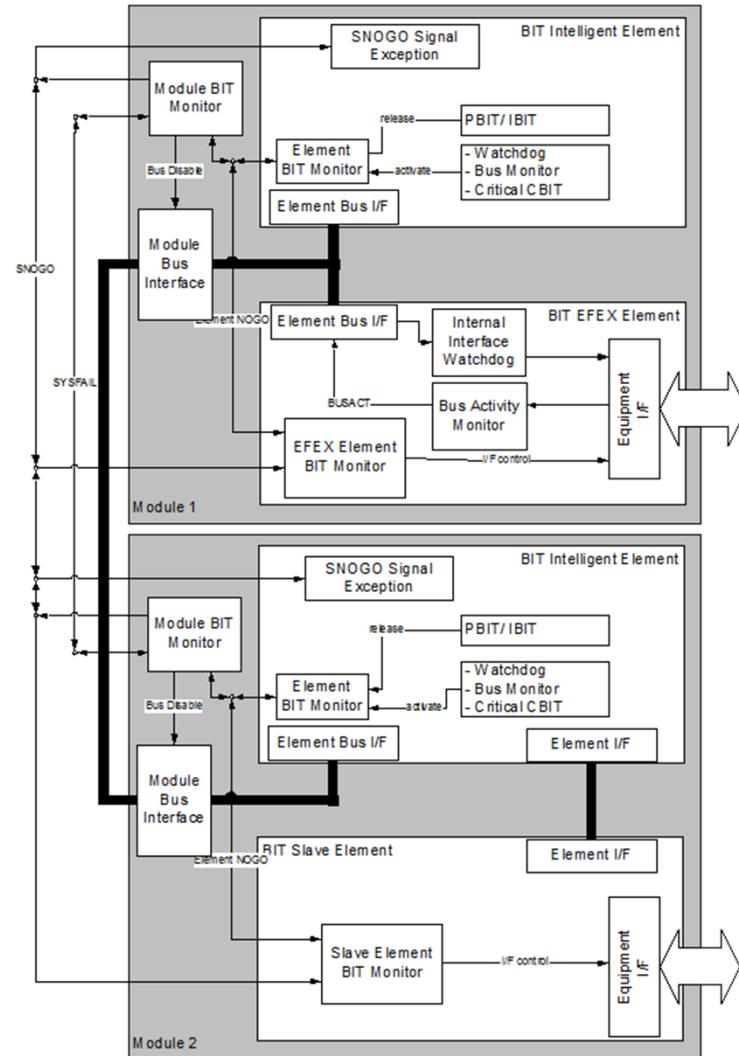
Line Replaceable Unit (LRU)


14th August 2012

Testability Concept and Development on the EuroFighter

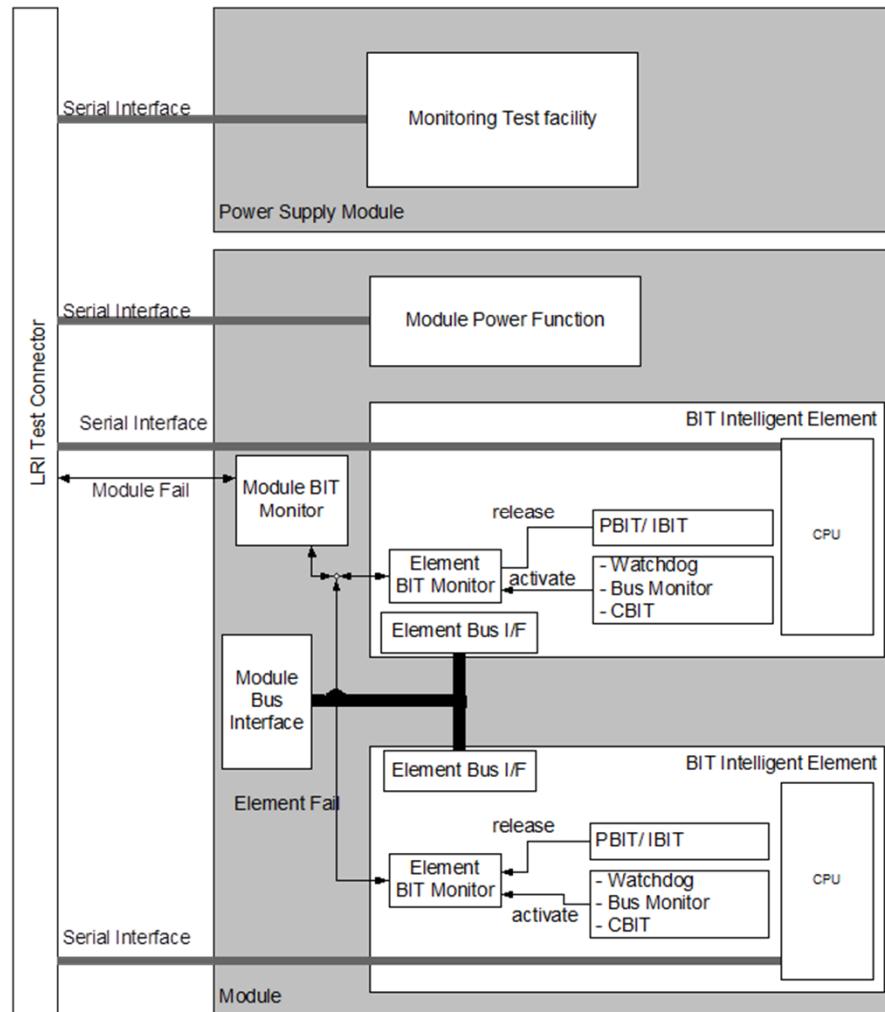

SMART Engineering Services Ltd

Safety Maintainability Availability Reliability Testability


Replaceable Items (example)

Testability Concept (Avionics)

Testability Concept (LRU - On-aircraft)


14th August 2012

Testability Concept and Development on the EuroFighter

SMART Engineering Services Ltd

Safety Maintainability Availability Reliability Testability

Testability Concept (LRU - Off-aircraft)

BIT Status Report (EuroFighter Maintenance Data Protocol)

	MSB	LSB
	15	0
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
Word 0	RT Address	Databus BC Equip ID Failure Count
Word 1	1 Affected RI	Affected RI Affected RI
Word 2	ELAPSED TIME INDICATION (ETI)	
Word 3	LRI Serial Number	
Word 4	LRI HARDWARE Configuration	
Word 5	LRI SOFTWARE Configuration	
Word 6	BIT ID	FAILURE IDENTIFICATION CODE
Word 7	EFABUS Time Tag Counter	
Word 8	PARAMETRIC DATA	
Word 9	PARAMETRIC DATA	
...		
Word n	PARAMETRIC DATA	

Failure Catalogue

An extension to the FMECA which includes:
Identification of failure detection, method of detection
(On-aircraft PBIT, CBIT or IBIT, Off-aircraft test) and
failure isolation.

FAILURE CATALOGUE			Equipment : AC/NC		RI : CEM			Date : 25.05.2007			Page 1
Failure No.	FMECA No.	Signal(s) or Functional Block(s) Affected	Failure Criterion/ Failure Description		Equipment Mode	Failure Location	Failure Can Be			Test Name/ Test Step	Remarks
			Next Higher Assy :	Break-down Code : 57071-048 Annex A			Detect By	Isol. By	Isol. to RI(s)		
5261	1.1.1.1.1	POWER FPGA PROGRAMM.	Loss of Power FPGA VPP or VPN (N N)	All modes		--	--				NCTA (Not Operational Effect)
5262	1.1.1.2.1	EFEX 1 FPGA POWER	Open Circuit for one or more EFEX1 FPGA Power Sect. capacitors (A N)	All modes	CEM	E	E	1		ATP	EFEX1 test; FF-OFF
5263	1.1.1.2.2	EFEX 1 FPGA POWER	Short Circuit for one or more EFEX1 FPGA Power Sect. 3.3V capacitors (X Z)	All modes	CEM	PBIT, IBIT, CBIT	PBIT, IBIT, CBIT	1	P02G1, I02G1, C02H1	Element NO	Element NOGO active.
5264	1.1.1.2.3	EFEX 1 FPGA POWER	Short Circuit for one or more EFEX1 FPGA Power Sect. 2.5V capacitors (X Z)	All modes	CEM	PBIT, IBIT, CBIT	PBIT, IBIT, CBIT	1	P02G1, I02G1, C02H1	Element NO	Element NOGO active.
5265	1.1.1.2.4	EFEX 1 FPGA POWER	Loss of EFEX1 FPGA Power Sect.VPP or VPN (N N)	All modes		--	--				NCTA (Not Operational Effect)
5266	1.1.1.2.5	EFEX 1 FPGA POWER	Loss of EFEX1 FPGA Power Sect. 3.3 or 2.5 V (X Z)	All modes	CEM	PBIT, IBIT, CBIT	PBIT, IBIT, CBIT	1	P02G1, I02G1, C02H1	Element NO	Element Fail active,

14th August 2012

Testability Concept and Development on the EuroFighter

SMART Engineering Services Ltd

Safety Maintainability Availability Reliability Testability

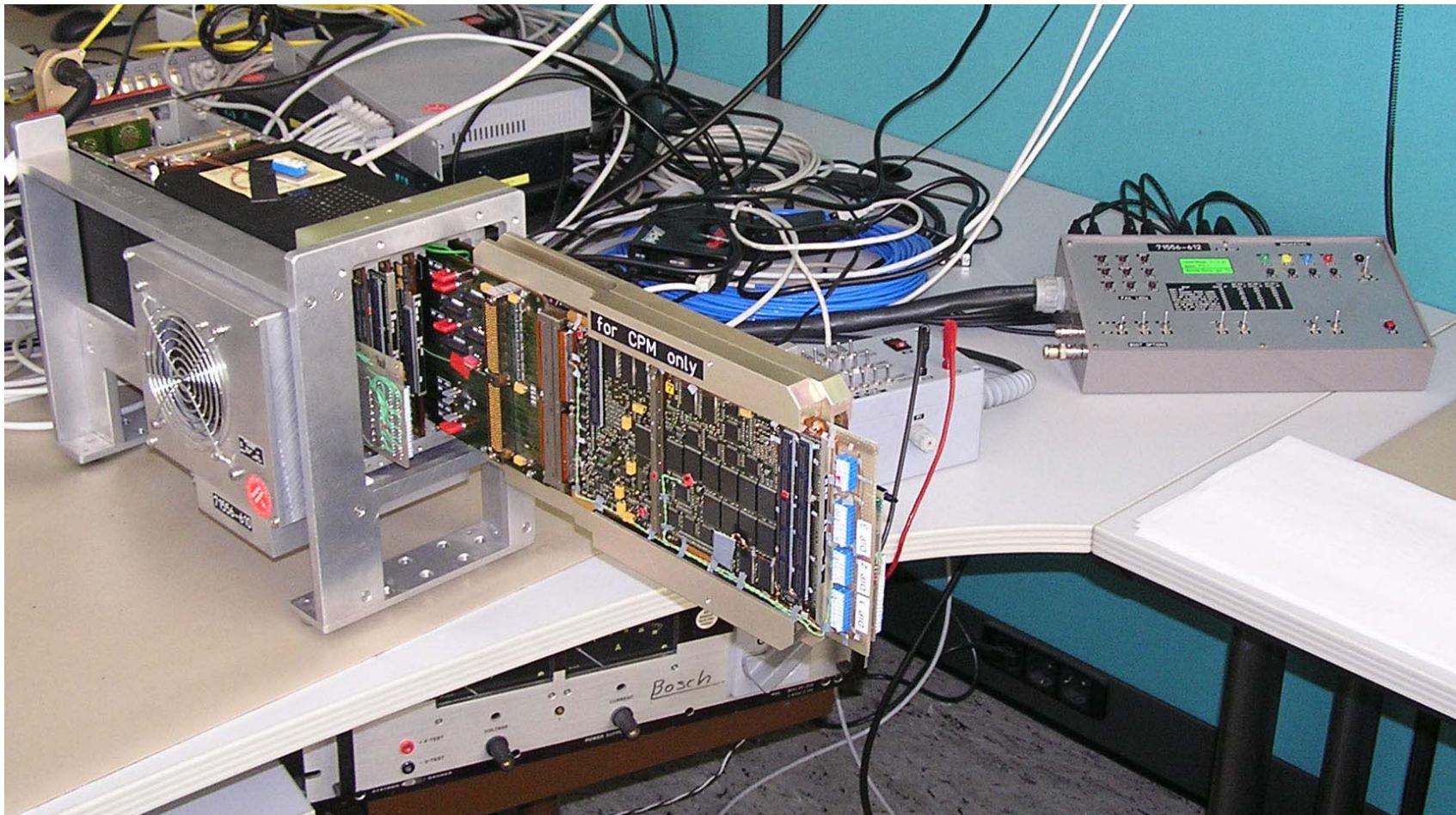
Testability Analysis

Calculation of the following:

- Failure Detection
 - Safety critical failures (req: 100% detection by CBIT)
 - All failures (req: $\geq 95\%$ detection by BIT)
- Failure Isolation
 - 1 RI (req: 90% by BIT)
 - 2 RI's (req: 95% by BIT)
 - ≥ 3 RI's (req: 100% by BIT)
- Test Time (req: PBIT $\leq 10s$, IBIT $\leq 60s$)
- False Alarm Rate (req: $\leq 5\%$)

Testability Demonstration

Practical fault insertion to assess and demonstrate the accuracy of the FMECA/Failure Catalogue and the Testability Analysis.


- Testability Demonstration Plan
- Fault Simulation List (customer selected failures from Failure Catalogue, approx 20 per RI)
- Testability Demonstration
- Testability Demonstration Report

Fault Simulation List (example)

FAILURE SIMULATION LIST RECORD SHEET	Equipment: IPU T2 Next Higher Assy:	RI: CPM Breakdown Code:	Date: 21st July 2008 Revision: 05	Sheet 8 of 31 Name: P. Gatland, RCD
---	--	----------------------------	--------------------------------------	--

Item No.	Failure No.	Failure Mode Description	Description of the Simulation	Equipment Mode	Failure Detected by	Failure Isolated by	Loc. RI(s)	BIT Test Result Indication	Test Name/ Test Step	Remarks
								Error Code		
8	2.4.6.1 (Criti. Class. II)	One or more data/address lines on PCI Bus stuck high or low	<u>Suggested Implementation</u> Connect JN5000 pin 61 (PCI32_AD(0)) to JN5000 pin 63 (GND). <u>Implementation Realised</u> <u>Switch No: 3 (DIP 2)</u>	All modes	P	P	1	P01C4	Processor Exception Raised	
					I	I	1	I01C4	Processor Exception Raised	
					C			C0871 C0872	Address Line Check	
									Observed Results	

Demonstration Test Set-Up

14th August 2012

Testability Concept and Development on the EuroFighter

SMART Engineering Services Ltd

Safety Maintainability Availability Reliability Testability

Testability “Lessons Learnt”

Design

- Testability concept an essential part of the design (BIT and 2nd/3rd line test)
- Good testability design will improve product RAMS resulting in reduced manufacturing costs and Life Cycle Costs.
- Design for Testability (BIST, JTAG, Memory with parity or coded protection, stimulation and monitoring etc.)
- BIT Specifications (hardware and software)

Testability “Lessons Learnt”

Process

- Perform FMECA/Failure Catalogue and Testability Analysis early so can influence design.
- Don't rely upon theoretical analysis – perform actual fault simulation on representative equipment to verify FMECA, Failure Catalogue and Testability Analysis.