Sexed Technologies produces more than 90% of sexed semen worldwide and does so for numerous large and small AI companies. In the meantime, the production of sexed semen across the board within Sexing Technologies has been replaced by the new method and only SexedULTRA™ is being produced by Sexing Technologies. The AI companies which own the semen determine whether the concentration will be 2.0 million or 4.0 million.

With the introduction of sexed semen more than 10 years ago, fertility results were lower than with conventional semen. In the meantime, a lot of research has been done and numerous aspects of the production process have been improved, resulting in higher conception rates. With the implementation of these developments, Sexing Technologies is now producing semen under the name SexedULTRA™. Recently SexedULTRA was tested in a large field trial in Germany.

The results of the field trial were extremely satisfactory. SexedULTRA™ was used in three concentrations, namely: 2.1 million, 3.0 million and 4.0 million. In addition, a comparison was made with the first XY method. The results were also compared with insemination with conventional semen. The results of the study are shown in Figure 1, which shows that the results of SexedULTRA™ are clearly better than the results of the original XY method. In addition, it is evident that the results of SexedULTRA™ 4M are comparable with conventional semen.

Sexed Technologies produces more than 90% of sexed semen worldwide and does so for numerous large and small AI companies. In the meantime, the production of sexed semen across the board within Sexing Technologies has been replaced by the new method and only SexedULTRA™ is being produced by Sexing Technologies. The AI companies which own the semen determine whether the concentration will be 2.0 million or 4.0 million.
Sexed semen is a significant factor in the results that farmers can achieve with genomic selection. That is the most prominent conclusion when we consider various recent scientific studies on the subject.

With the arrival of sexed semen and genomic selection, the farmer’s opportunities in breeding have increased enormously. Teams from various universities have looked at the effects of the use and combination of different strategies.

The strong contribution of sexed semen to rapid genetic progress can especially be attributed to the degree of selection within one’s own herd. In short, by using sexed semen, only the best half of the herd is needed for the next generation. Identifying the best is now possible earlier and with more accuracy using genomic selection. The remaining animals can be bred to a beef bull or can be used as recipients for embryos. In herds with a high genetic level, a greater portion of all animals can be bred with sexed semen and can subsequently be selected as calves. As such, breeding continues to involve selecting the best animals. Stricter selection provides higher results and sexed semen ensures more abundant selection opportunities.

Heifer Calves Provide an Advantage for Milk Production

Two-year-olds that give birth to a heifer calf produce more milk than two-year-olds that give birth to a bull calf. That is a significant conclusion of a large American research study. The research project included 2.5 million lactations of 1.5 million significant conclusion of a large American research study. The study showed that the cows, that gave birth to a heifer calf with the first calving, produce over 400 kg more milk during the first two lactations.

When a cow gives birth to a heifer calf on her first calving, then there is no significant difference for the sex of the calf when calving for the second time. When a cow gives birth to a bull calf when calving for the first time, then the sex does make a difference with a second time calving, and there is a clear effect, with an advantage for those giving birth to a heifer calf. This means that the higher price of sexed milk, when used on heifers, is already compensated with the extra milk that the bred animals produce during their first two lactations.

Sexed semen is a significant factor in the results that farmers can achieve with genomic selection. That is the most prominent conclusion when we consider various recent scientific studies on the subject.

With the arrival of sexed semen and genomic selection, the farmer’s opportunities in breeding have increased enormously. Teams from various universities have looked at the effects of the use and combination of different strategies.

The strong contribution of sexed semen to rapid genetic progress can especially be attributed to the degree of selection within one’s own herd. In short, by using sexed semen, only the best half of the herd is needed for the next generation. Identifying the best is now possible earlier and with more accuracy using genomic selection. The remaining animals can be bred to a beef bull or can be used as recipients for embryos. In herds with a high genetic level, a greater portion of all animals can be bred with sexed semen and can subsequently be selected as calves. As such, breeding continues to involve selecting the best animals. Stricter selection provides higher results and sexed semen ensures more abundant selection opportunities.

Heifer Calves Provide an Advantage for Milk Production

Two-year-olds that give birth to a heifer calf produce more milk than two-year-olds that give birth to a bull calf. That is a significant conclusion of a large American research study. The research project included 2.5 million lactations of 1.5 million milking cows in the United States. The study showed that the cows, that gave birth to a heifer calf with the first calving, produce over 400 kg more milk during the first two lactations.

When a cow gives birth to a heifer calf on her first calving, then there is no significant difference for the sex of the calf when calving for the second time. When a cow gives birth to a bull calf when calving for the first time, then the sex does make a difference with a second time calving, and there is a clear effect, with an advantage for those giving birth to a heifer calf. This means that the higher price of sexed milk, when used on heifers, is already compensated with the extra milk that the bred animals produce during their first two lactations.

sexed semen for 8/9 years. We use around 50% SexedULTRA semen.

I started using SexedULTRA semen to have more females. I’ve been using sexed semen for 6/7 years. We use around 50% SexedULTRA semen.

We are interested in SexedULTRA semen to speed up recovery time and get a greater choice amongst the animals we want to milk. We’ve used sexed semen approximately for six years now. We use SexedULTRA only on the best first-calving females, the heifers are all inseminated with SexedULTRA. By using SexedULTRA our genetic level has definitely improved. On the oldest calving females, which we do not inseminate with sexed semen, we use conventional semen from top bulls. Today the goal is to get the highest number of females in order to improve the selection of the herd. Regardless, the strategy will be to sell excess females to generate income.

Heifer Calves Provide an Advantage for Milk Production

Two-year-olds that give birth to a heifer calf produce more milk than two-year-olds that give birth to a bull calf. That is a significant conclusion of a large American research study. The research project included 2.5 million lactations of 1.5 million milking cows in the United States. The study showed that the cows, that gave birth to a heifer calf with the first calving, produce over 400 kg more milk during the first two lactations.

When a cow gives birth to a heifer calf on her first calving, then there is no significant difference for the sex of the calf when calving for the second time. When a cow gives birth to a bull calf when calving for the first time, then the sex does make a difference with a second time calving, and there is a clear effect, with an advantage for those giving birth to a heifer calf. This means that the higher price of sexed milk, when used on heifers, is already compensated with the extra milk that the bred animals produce during their first two lactations.

With the arrival of sexed semen and genomic selection, the farmer’s opportunities in breeding have increased enormously. Teams from various universities have looked at the effects of the use and combination of different strategies.

The strong contribution of sexed semen to rapid genetic progress can especially be attributed to the degree of selection within one’s own herd. In short, by using sexed semen, only the best half of the herd is needed for the next generation. Identifying the best is now possible earlier and with more accuracy using genomic selection. The remaining animals can be bred to a beef bull or can be used as recipients for embryos. In herds with a high genetic level, a greater portion of all animals can be bred with sexed semen and can subsequently be selected as calves. As such, breeding continues to involve selecting the best animals. Stricter selection provides higher results and sexed semen ensures more abundant selection opportunities.