Connection Design Assistance Manual

Architectural Precast Concrete

Glass Fiber Reinforced Concrete

Cast Stone
TABLE OF CONTENTS

PART 1 - ARCHITECTURAL PRECAST CONCRETE

1.1 CONCRETE STRUCTURE ...1-1
 A. Type 1 - Load Bearing to Floor Slab ... 1-1
 B. Type 2 - Load Bearing to Floor Slab ... 1-2
 C. Type 3 - Load Bearing to Floor Slab ... 1-3
 D. Type 4 - Load Bearing to Floor Slab ... 1-4
 E. Type 5 - Load Bearing to Floor Slab ... 1-5
 F. Lateral Tieback to Top of Slab .. 1-6
 G. Load to Foundation or Curb .. 1-7
 H. Load Bearing to Cast-in-Place Curb ... 1-8
 I. Load and Tieback to Shear Wall .. 1-9
 J. Lateral Tieback to Shear Wall ... 1-10

1.2 STEEL STRUCTURE ...1-11
 A. Load to Column ... 1-11
 B. Load to Perimeter Beam .. 1-12
 C. Tieback to Top of Beam .. 1-13
 D. Tie Back Top of Concrete Deck .. 1-14
 E. Tie Back to Underside of Beam .. 1-15
 F. Lateral Connection Below Beam .. 1-16
 G. Tie back Connection to Column .. 1-17

1.3 MISCELLANEOUS CONNECTIONS ...1-18
 A. Panel to Panel Stacked Load Bearing ... 1-18
 B. Panel to Panel Load Bearing ... 1-19
 C. Panel to Panel – Non Load Bearing ... 1-20
 D. Panel to Panel – Non Load Bearing ... 1-21
 E. Type 1 - Column Enclosures Connection .. 1-22
 F. Type 2 - Column Enclosures Connection .. 1-23
 G. Load Bearing Below Structure .. 1-24

PART 2 - GLASS FIBER REINFORCED CONCRETE (GFRC)

2.1 CONNECTIONS ...2-1
 A. Load to Top of Perimeter Beam ... 2-1
 B. Tie Back to Underside of Steel Beam .. 2-2
 C. Roof Cornice ... 2-3
 D. Load Bearing to Concrete Floor Slab ... 2-4
 E. Lateral Tieback to Underside of Concrete Slab .. 2-5
 F. Accent Banding .. 2-6
 G. Soffit ... 2-7
TABLE OF CONTENTS

PART 3 - CAST STONE

3.1 CONNECTIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Accent Banding Without Mechanical Fasteners</td>
<td>3-1</td>
</tr>
<tr>
<td>B. Accent Banding With Mechanical Fasteners</td>
<td>3-2</td>
</tr>
<tr>
<td>C. Window Sill</td>
<td>3-3</td>
</tr>
<tr>
<td>D. Window Lintels</td>
<td>3-4</td>
</tr>
<tr>
<td>E. Doweled Coping</td>
<td>3-5</td>
</tr>
<tr>
<td>F. Multiple Units with Mechanical Fasteners</td>
<td>3-6</td>
</tr>
<tr>
<td>G. Parapet - Control Joints</td>
<td>3-7</td>
</tr>
<tr>
<td>H. Soffits</td>
<td>3-8</td>
</tr>
<tr>
<td>I. Watertable</td>
<td>3-9</td>
</tr>
</tbody>
</table>
PART 1
Architectural
Precast
Concrete

APA
PART 1 - ARCHITECTURAL PRECAST CONCRETE

1.1 CONCRETE STRUCTURE

 A. Type 1 - Load Bearing to Floor Slab

 ▪ Connection to concrete slab with precast panel terminating at top of slab.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineerer.
B. Type 2 - Load Bearing to Floor Slab

- Top of panel terminates above floor line.
- Load bearing to concrete floor slab with recessed pocket.
- Embed recessed so not to interfere with interior finishes.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
C. Type 3 - Load Bearing to Floor Slab

- Projecting bearing plate flush with top of slab.
- Ideal for minimum distance from edge of slab to interior finishes.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
D. Type 4 - Load Bearing to Floor Slab

- Typical distance from edge of slab to interior finish.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineer.
E. Type 5 - Load Bearing to Floor Slab

- Similar condition to concrete haunch (connection D).
- This connection may be more cost effective for the precast manufacturer.
F. Lateral Tieback to Top of Slab

- Slotted insert (vertical) permits deflection of slab.
- Fixed insert in panel may be used with slotted angle in lieu of slotted insert.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineerer.
G. Load to Foundation or Curb

- With lateral tieback to structure.
- Tieback may be welded solid. Foundation will not deflect.
- Waterproofing and grout, if required, by others.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineerer.
H. Load Bearing to Cast-in-Place Curb

- Shims shown beyond.
I. Load and Tieback to Shear Wall

- Access from precast panel face.
- Grout is damned in place to prevent leakage.
- Shear wall will not deflect, therefore, slotted connection not required.
J. Lateral Tieback to Shear Wall

- Local blockout in shear wall for access from inside structure.
- Filling local blockout by others.
- Insert does not need to be slotted. Shear wall will not deflect.
1.2 STEEL STRUCTURE

A. Load to Column

- The precast erector may weld the plates to the column or they may be welded in the shop by the steel fabricator.
- Note that the connection is symmetrical about the centerline of column. Each load-bearing angle receives a tie back connection.
- Angle with slots may be used in lieu of slotted inserts
B. Load to Perimeter Beam

- Load to top of concrete deck.
- See connection 1.2, C for lateral tieback example. Slotted insert would run horizontal.
C. Tieback to Top of Beam

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineerer.
D. Tie Back Top of Concrete Deck

- Used between bearing points.

Each illustrative connection is shown for concept only. All connections must be engineered for project specific lateral and loading requirements. All connections must be approved by a licenced engineerer.
E. Tie Back to Underside of Beam

- Bracing of beam may be required to prevent twisting due to lateral loads.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
F. Lateral Connection Below Beam

- Connection falls below structure.
- May be used when more panel hangs below top of slab and lateral bracing is required.
- Field installed.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
G. Tie back Connection to Column

- Angle shown. Plates or channels may be used when interior finish to column is reduced.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineerer.
1.3 MISCELLANEOUS CONNECTIONS

A. Panel to Panel Stacked Load Bearing

- Vertical load is transferred to panel below via shims.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineerer.
B. Panel to Panel Load Bearing

- Column on each side of opening carry load of spandrel.
- Ideal when bearing to structure beyond structural column location is required.
- Precast spandrel transfers vertical load to column.

Each illustrative connection is shown for concept only. All connections must be engineered for project specific lateral and loading requirements. All connections must be approved by a licensed engineer.
C. Panel to Panel – Non Load Bearing

- Access from backside.
- Slotted plates may also be used.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineer.
D. Panel to Panel – Non Load Bearing

- Slip connection for panel-to-panel alignment only.
- Ideal for above roofline when exposed to view.
E. Type 1 - Column Enclosures Connection

- Access from front face.
- Steel rod is used to bridge plates for welding.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
F. Type 2 - Column Enclosures Connection

- Access from front face.
- Steel rod is used to bridge plates for welding.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
G. Load Bearing Below Structure

- Used primarily with excessive floor-to-floor heights.
- Concrete structure shown. Steel structure similar.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineer.
PART 2

Glass Fiber Reinforced Concrete

APA
PART 2 - GLASS FIBER REINFORCED CONCRETE (GFRC)

2.1 CONNECTIONS

A. Load to Top of Perimeter Beam

- Large window unit panelization.
- Bearing angle is pre-attached to subframe.
- Steel frame picks up window dead loads.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
B. Tie Back to Underside of Steel Beam

- Large panel configuration.
- Clips to metal subframe are pre-attached.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
C. Roof Cornice

- Several units form cornice.
- Light gauge framing.
- The erector cauls field-installed fasteners.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
D. Load Bearing to Concrete Floor Slab

- Bearing angle in recessed pocket.
- Angle shop applied to subframe.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineer.
E. Lateral Tieback to Underside of Concrete Slab

- Angel allows for deflection of slab.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineerer.
Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineer.
G. Soffit

- Erector counter sinks and cauls exposed fasteners.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licenced engineerer.
PART 3 - CAST STONE

3.1 CONNECTIONS

A. Accent Banding Without Mechanical Fasteners
 - Laid in place with mortar.
B. Accent Banding With Mechanical Fasteners

- Larger units mortared in place and tied back to structure.

Each illustrative connection is shown for concept only.

All connections must be engineered for project specific lateral and loading requirements.

All connections must be approved by a licenced engineerer.
C. Window Sill

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
D. Window Lintels

- Using relieving angels.
E. Doweled Coping

- Similar detail using masonry exposed both sides.

Each illustrative connection is shown for concept only.
All connections must be engineered for project specific lateral and loading requirements.
All connections must be approved by a licensed engineer.
F. Multiple Units with Mechanical Fasteners

- Units are stacked and set with mortar.
G. Parapet - Control Joints

- Control joints are caulked by others with sealant.

Each illustrative connection is shown for concept only.

All connections must be engineered for project specific lateral and loading requirements.

All connections must be approved by a licensed engineer.
H. Soffits

- Supported from steel structure.
I. Watertable

- Dowelled, grouted and mechanically fastened.