just how GREEN is it?
WHY REVISIT BRICK?
It’s a material you’ve long known, specified and used successfully. You know its design flexibility, durability, and low maintenance, and how its endless array of colors, shapes, textures, and sizes set the standard for beauty. What you may not know is that it’s a natural for today’s new emphasis on sustainable design.

Its unsurpassed life cycle, exceptional energy efficiency, natural ingredients, minimal waste, and countless recycling options are just a few of the properties that make brick the superb sustainable material it has been for thousands of years.

GOOD QUESTION
“Green” is the idea that the environmental decisions we make today will resonate for years to come. Also known as “green architecture,” “high-performance building” and “sustainable design,” it expands the focus beyond the building itself, taking into account the long-term impact it will have on the environment, the economy, and human health. The concept of “green” has been around for decades. Early green design often focused on energy efficiency or used recycled materials to promote clean air, water, and soil. However, environmental awareness has increased dramatically in the past decade. Today, architects and designers, contractors, manufacturers and suppliers have an increased understanding of sustainable design and of their role in preserving our planet’s precious resources.

As sustainable design continues to gain prevalence, the definition of “green” will continue to expand and evolve. More than a trend, sustainable design is becoming the future of architecture.

Increasingly, clients are demanding efficient, long-lasting design that enhances both the quality of life for their communities as well as their bottom line. Various organizations, institutions, and government bodies are aggressively creating guidelines and criteria to assess the sustainability of buildings and the materials that comprise them. That’s why we’ve brought you this information about brick.

What constitutes “green”?
The U.S. Green Building Council defines “sustainable design” as the practices of design and construction that significantly reduce or eliminate the negative impact of buildings on the environment and occupants in five broad categories:

1. Sustainable site planning
2. Safeguarding water & water efficiency
3. Energy efficiency & renewable energy
4. Conservation of materials & resources
5. Indoor environmental quality
6. Regionally-appropriate planning and design.

exactly what is “GREEN”?
BRICK IS EVERYWHERE
You’ve known, and probably lived with it all your life. Made of the most abundant materials on the planet, clay and shale, it is “of the earth” in the most basic way.

Care is taken to locate manufacturing near these natural materials, so as to minimize energy consumption in transporting them. The clay and shale are harvested from the earth’s surface by a process that has minimal long-term environmental effect on the land.

Brick manufacturers take pride in meeting or exceeding the federal requirements which govern this process, including an aggressive reclamation program that converts all involved land to a desirable natural condition, such as lakes and natural preserves. In fact, numerous manufacturers have been recognized for their efforts in such land enhancement. The harvested materials are blended, with little or no refinement, and then extruded or cast into the desired shapes. Next, they’re slowly conveyed through a kiln at about 2000°F, which transforms the raw material into permanent modular units. Sometimes recycled and industrial waste aggregates, such as fly ash and incinerator ash and waste glass, are mixed with the clay and shale. In all cases, the high firing temperatures used in the manufacturing process render the bricks environmentally safe and user-friendly.

Throughout this process, there is virtually no waste – virtually all of the mined clay is used in the manufacturing process. Such recycling and waste containment, which minimizes the mining of gravel as aggregate and diverts waste materials from landfills, are benefits unequalled by any other building material.

Emissions throughout this process are regulated (as they are for most industrial processes) by the Clean Air Act, with modern brick plants strictly adhering to the established standards to assure air quality.

After cooling, brick is stacked and placed in stock, or shipped to a site for immediate use. Because brick is produced worldwide and in 38 of the 50 states in the US, it is truly a regionally available material. Shipping actually averages no more than 175 miles.

Brick’s small size and efficient modularity allows it to be put in place with almost no waste. Even its minimal packaging, plastic straps and wooden pallets, is easily reused or recycled.

Such recycling and waste containment, which minimizes the mining of gravel as aggregate and diverts waste materials from landfills, are benefits unequalled by any other building material.

care is taken to locate manufacturing near these natural materials, so as to minimize energy consumption in transporting them. the clay and shale are harvested from the earth’s surface by a process that has minimal long-term environmental effect on the land.

brick manufacturers take pride in meeting or exceeding the federal requirements which govern this process, including an aggressive reclamation program that converts all involved land to a desirable natural condition, such as lakes and natural preserves. in fact, numerous manufacturers have been recognized for their efforts in such land enhancement. the harvested materials are blended, with little or no refinement, and then extruded or cast into the desired shapes. next, they’re slowly conveyed through a kiln at about 2000°F, which transforms the raw material into permanent modular units. sometimes recycled and industrial waste aggregates, such as fly ash and incinerator ash and waste glass, are mixed with the clay and shale. in all cases, the high firing temperatures used in the manufacturing process render the bricks environmentally safe and user-friendly.

throughout this process, there is virtually no waste – virtually all of the mined clay is used in the manufacturing process.

emissions throughout this process are regulated (as they are for most industrial processes) by the clean air act, with modern brick plants strictly adhering to the established standards to assure air quality.

after cooling, brick is stacked and placed in stock, or shipped to a site for immediate use. because brick is produced worldwide and in 38 of the 50 states in the us, it is truly a regionally available material. shipping actually averages no more than 175 miles.

brick’s small size and efficient modularity allows it to be put in place with almost no waste. even its minimal packaging, plastic straps and wooden pallets, is easily reused or recycled.

emissions throughout this process are regulated (as they are for most industrial processes) by the clean air act, with modern brick plants strictly adhering to the established standards to assure air quality.

after cooling, brick is stacked and placed in stock, or shipped to a site for immediate use. because brick is produced worldwide and in 38 of the 50 states in the us, it is truly a regionally available material. shipping actually averages no more than 175 miles.

brick’s small size and efficient modularity allows it to be put in place with almost no waste. even its minimal packaging, plastic straps and wooden pallets, is easily reused or recycled.

 emissions throughout this process are regulated (as they are for most industrial processes) by the clean air act, with modern brick plants strictly adhering to the established standards to assure air quality.

after cooling, brick is stacked and placed in stock, or shipped to a site for immediate use. because brick is produced worldwide and in 38 of the 50 states in the us, it is truly a regionally available material. shipping actually averages no more than 175 miles.

brick’s small size and efficient modularity allows it to be put in place with almost no waste. even its minimal packaging, plastic straps and wooden pallets, is easily reused or recycled.
The Benefits of Building Green*

ENVIRONMENTAL
Building green reduces the impact of natural resource consumption
ECONOMIC
It improves the bottom line in terms of building operation, asset value, worker productivity, and can bring favorable zoning ordinances and tax benefits
HEALTH & SAFETY
It enhances occupants’ comfort & health
COMMUNITY
It minimizes the strain on local infrastructures by lessening demand for landfills, water supply, storm water management, and transportation of materials

* U.S. Green Building Council

Brick has an amazing life cycle, conservatively estimated at one hundred years, yet it’s hard to ignore older examples of its longevity, such as the Great Wall and the Roman aqueducts. It ages beautifully, and requires almost no maintenance. Critics, who understandably may attempt to divert your attention elsewhere, tend to focus on the amount of heat energy used to make brick without putting it in the context of its long life.

Consider this:
The AIA Environmental Resource Guide reports the embodied energy of brick as less than that of concrete, glass, steel or aluminum. Since that report was issued, the brick industry has reduced the actual "embodied energy" of brick (the energy required to mine, manufacture and transport it), by almost 70%. The embodied energy decreased from 4,000 BTU’s per pound (14,000 BTU’s per standard brick) in 1970 to 1,239 BTU’s per pound (4,300 BTU’s per standard brick) today. This number is also far below the embodied energy of EIFS and fiber-cement products.

A recent study conducted by the National Brick Research Center demonstrates these results. [see chart on overleaf]

Whether the building in which it’s originally used sees its hundredth birthday or not, the life of the brick can go on—another building as salvaged brick (with all its charms and beneficial qualities intact), crushed and used as a roadway sub-base material, or chipped into a permanent landscaping mulch, a great vantage from which to watch its next generation carry on its time-honored and valued tradition. And, in the rare event that it ever finds its way into a landfill, because it’s simply "earth," it’s inert, so it requires no special handling.

So, "earth to earth,” and all that.
The Benefits of Building Green*

ENVIRONMENTAL
Building green reduces the impact of natural resource consumption

ECONOMIC
It improves the bottom line in terms of building operation, asset value, worker productivity, and can bring favorable zoning ordinances and tax benefits

HEALTH & SAFETY
It enhances occupants’ comfort & health

COMMUNITY
It minimizes the strain on local infrastructures by lessening demand for landfills, water supply, storm water management, and transportation of materials

* U.S. Green Building Council

Life Cycle Insights
The following chart provides a cradle-to-grave assessment of all energy consumption & pollution generated in manufacturing a unit area (square foot) distributed over the warranted life of the product. The warranted life was chosen, when available, as the best indicator of the potential performance of the product.

Thus, unlike the BRE Profiles, the envelope material was assessed based on its warranted life rather than an average building life. The end product of the assessments was the kilowatt hours consumed, the pounds of pollution, and the landfill/depletion weight per unit area of cladding on a per year of service life basis.

<table>
<thead>
<tr>
<th>Cladding/Life Cycle Analysis</th>
<th>Basic Data</th>
<th>Brick Masonry</th>
<th>Block Masonry</th>
<th>Fiber Cement</th>
<th>Vinyl Siding</th>
<th>EIFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warranty Weight/ft²</td>
<td>100 years</td>
<td>50 years</td>
<td>50 years</td>
<td>50 years</td>
<td>5 years</td>
<td>35.5 lb.</td>
</tr>
<tr>
<td>Energy, Mining & Manufacturing</td>
<td>Recycling: Brick 100%</td>
<td>Recycling: Mortar 40%</td>
<td>Energy: 0.252</td>
<td>Energy: 0.328</td>
<td>Energy: 0.328</td>
<td>Energy: 0.210</td>
</tr>
<tr>
<td>Recycle: 80%</td>
<td>Recycle: 0%</td>
<td>Recycle: 0%</td>
<td>Recycle: 80%</td>
<td>Recycle: 0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution Water & air emissions lb/ft²/yr</td>
<td>0.011</td>
<td>0.005</td>
<td>0.026</td>
<td>0.001</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>Distribution Energy Avg Distance, Miles & Net Energy kWh/ft²/yr</td>
<td>175 miles</td>
<td>100 miles</td>
<td>365 miles</td>
<td>310 miles</td>
<td>300 miles</td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td>0.004</td>
<td>0.146</td>
<td>0.001</td>
<td>0.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste & Depletion lb/ft²/yr</td>
<td>0.108</td>
<td>0.203</td>
<td>0.048</td>
<td>0.460*</td>
<td>0.828</td>
<td></td>
</tr>
<tr>
<td>TOTALS Energy</td>
<td>0.256</td>
<td>0.232</td>
<td>0.474</td>
<td>0.211</td>
<td>5.669</td>
<td></td>
</tr>
<tr>
<td>Pollution</td>
<td>0.011</td>
<td>0.005</td>
<td>0.026</td>
<td>0.001</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>Waste & Depletion</td>
<td>0.108</td>
<td>0.203</td>
<td>0.048</td>
<td>0.460</td>
<td>0.828</td>
<td></td>
</tr>
</tbody>
</table>

Research data generated by the National Brick Research Center, Clemson University

1 No proven method available
2 Used the maximum allowed in this analysis (80%). According to the Vinyl Siding Institute, 100% of vinyl siding is recyclable. Some environmental groups claim recycling of vinyl siding results in dioxin emissions.
3 Low weight per truckload influenced results
4 Depletion of salt in processing PVC influenced results

HARAPPA BRICK
Fired brick from Harappa, the capital city of Indus valley, Harappan culture (now part of Pakistan) circa 2500 BC

GREAT WALL OF CHINA
Brick construction dating back as far as 300 BC

JERICHO BRICK
From a pre-pottery Neolithic settlement discovered beneath the biblical city of Jericho. Carbon 14 tests at the site indicate it is 9,000-10,000 years old.
As you might imagine, brick has always been people-friendly. It has virtually no emissions and it’s 100% safe. Add to that it’s fireproof, and water and insect resistant. It’s virtually impervious to the ravages of time and weather, and it’s a natural insulator. Its ability to absorb and release thermal energy over an extended period makes it an ideal choice for reducing peak energy loads. This “thermal lag” also makes it a particularly attractive material for use in conjunction with passive solar construction.

In the 1980’s, “sick inside” took on a new meaning. That’s when we became painfully aware that some new construction was filled with potentially hazardous materials and unhealthy emissions. Since then, there has been an aggressive effort to eliminate these risks. Today, this vital concern has naturally become a measure of a building’s “green” success, since environmentally-sensitive new construction misses the point if it isn’t a safe and healthy environment for the people within it.

Hey, you may not be able to snuggle up to brick, but you almost wish you could. In the built environment, it’s a breath of fresh air.

a COMFORTABLE choice
go for the GREEN

TAKE THE LEAD
As the environmental consciousness of clients and society grows, building professionals will increasingly be asked to create projects that incorporate green design principles.

One of the first steps toward building environmentally sensitive structures is to select the best materials for the job-at-hand.

You’ve chosen brick for its beauty, design flexibility, durability and overall value.

Now you can confidently achieve environmentally friendly, sustainable, certified projects.

Note: This publication presents information specific to clay brick. In masonry construction, consideration should also be given to potential LEED® contributions from mortar and/or wall accessories that may contain recycled content and/or that qualify as regional materials.

SEE BIA Technical Note 48 for updated information on LEED® and Green Globes® credits. For a side-by-side comparison of how brick contributes to LEED® Green Globes®, LEED® for Homes® and NAHB National Green Building Standards.
Here are just a few areas where brick can contribute to a project being awarded a LEED® certification.* Note: Points shown below refer to total points allowed in credit, not points contributed solely by brick.

CATEGORY: SUSTAINABLE SITES

Credit 6

Stormwater Design (1-2 points)

Permeable pavements utilizing flexible brick pavements allow for water to filter back into the ground.

Credit 7

Heat Island Effect: Non-Roof (1 point)

Light-colored brick pavers (plus some select, red pavers) qualify as a hardscape material with an SRI of at least 29.

CATEGORY: ENERGY & ATMOSPHERE

Credit 1

Optimize Energy Performance (1-10 points)

Brick is an energy-efficient material with insulating value and high thermal mass. It can also be used in passive solar construction by utilizing its thermal lag to reduce peak energy loads.

Credit 4

Low-Emitting Materials – Flooring Systems (1 point)

The use of brick floors avoids carpets and adhesives – leading to the avoidance of VOCs.

Credit 5

Construction Waste Management (1-4 points)

Waste from the brick production process can be recycled.

Credit 7

Regional Priority (1-4 points)

Brick can help achieve credits that address geographically specific environmental priorities.

Credit 9

Recycled Content (1-2 points)

Numerous manufacturers make brick that incorporates recycled or industrial waste aggregates that are rendered harmless when the brick is fired.

Credit 10

Orbital Masonry (1-2 points)

Whether or not the masonry is standard, brick can contribute up to 15% of the 1000 points available in the following categories:

CATEGORY POINTS

- Sustainable Site 26
- Water Efficiency 10
- Energy & Atmosphere 35
- Materials & Resources 14
- Indoor Environmental Quality 15
- Innovation in Design 6
- Regional Priority 4
- Total Possible Points 110

LEED® certifications are awarded according to the following scale:

CATEGORY POINTS

- Certified 40-49
- Silver 50-59
- Gold 60-79
- Platinum 80 and above

Green Globes

The Green Globes Initiative became accredited in 2005 as a standards developer by ANSI and owns the U.S. license for Green Globes® – a green commercial building rating system that combines education with environmental assessments in fully interactive online tools for new and existing buildings. With the Green Globes rating system, the use of brick can assist with up to 15% of the 1000 points available in the following categories:

Site ASSESSMENT AREA No. 7

Subcategories include: Ecological Impacts; Storm Water Management; Site Ecology

Energy ASSESSMENT AREA No. 8

Subcategories include: Passive Demand Reduction; Thermal resistance and Transmissance

Resources/Materials ASSESSMENT AREA No. 10

Subcategories include: Material Content; Transportation of Materials; Salvaged Materials; Reuse of Existing Structure/Building Façade: Reduction, Reuse and Recycling of Waste; Building Service Live Plan

Indoor Environment ASSESSMENT AREA No. 12

Subcategories include: Source Control of Indoor Pollutants; Acoustic Comfort

Note: See BIA Tech Note for complete description of categories and point contributions from brick.

Note: Terms such as recycled, salvaged, and industrial waste aggregates refer to materials that are rendered harmless when the brick is fired.

Note: Communities and States also can also yield a Life Cycle Assessment advantage.

Note: Source Control of Indoor Pollutants: Acoustic Comfort

Note: LEED credits are updated for each version of the LEED Rating System.

Note: Certain LEED credits contribute to LEED for Homes and LEED for Schools.

Note: Credit categories are in accordance with the LEED Rating System.
Over the years, the brick industry has taken numerous positive steps to ensure that it respects and protects our environment. For instance, over 90% of all brick manufacturers are aggressively reclaiming and enhancing the land from which clay and shale have been harvested. Over 90% use dust control and collection equipment. About 80% reuse their own fired waste material or convert it into other products, and almost half use processed or recycled waste materials in brick production. Numerous brick companies have received both state and national recognition for outstanding accomplishments in safeguarding the environment. And more improvements are in the works.

Like anything made from natural materials, there is an ongoing, delicate balance between the earth itself and that which is harvested from it. Brick is no exception. In fact, it is an exceptional example.

Now, more than ever, building professionals will be expected to incorporate “green” concepts that satisfy or exceed guidelines established by local, state and federal governments, agencies, and institutions. The brick industry is committed to supporting this movement by adhering to the following Brick Industry Environmental Policy Statement:

The brick industry recognizes that the stewardship of our planet lies in the hands of our generation. Our goal is to continually seek out innovative, environmentally friendly opportunities in the manufacturing process and for the end use of clay brick products.

As demonstrated over time, we are committed to manufacturing products that provide exceptional energy efficiency, durability, recyclability and low maintenance with a minimal impact on the environment from which they originate. We assure that our facilities meet or exceed state and federal environmental regulations, and we will continue to partner with building professionals to help them in using our products to create environmentally responsible living and working spaces for today’s and future generations.

Brick is the first masonry material that can attain a “Certificate of Environmental Claims” from a third party source. The Bishop Materials Laboratory, located at The National Brick Research Center of Clemson University, has developed a means to verify the use of renewable energy sources in firing, the content of recycled materials, and reductions in resources for manufacturing brick.
It's world-wide and history-long.
Natural & abundant.
It's amazingly recyclable, with an incredible life cycle.
Low-maintenance.
Environmentally responsible. With proven durability.
Near zero waste.
Truly green.

Brick.
It's the basic building material we can all live with. Again and again.

For more information please contact:
Brick Industry Southeast Region
8420 University Executive Park
Suite 800
Charlotte, NC 28262
704.510.1500
800.622.7425

If possible, please pass this brochure along to an interested colleague.

This brochure contains no less than 30% post-consumer fiber, and is elemental chlorine free.

Copyright 2010 Brick Industry Southeast Region
Brochure design
Primary photography Rick Hovis
All rights reserved

This information is brought to you by:
Brick Industry Association
1850 Centennial Park Drive
Suite 301
Reston, VA 20191
703.620.0010
www.gobrick.com

LEED Silver
LEED Silver
LEED Silver
LEED Silver

IT’S GREEN
IT’S GREEN
IT’S GREEN
IT’S GREEN

GO WITH BRICK
GO WITH BRICK
GO WITH BRICK
GO WITH BRICK

Top:
Durham County Public Library
Durham, NC
Architect: The Freelon Group

Middle:
University of South Carolina
Green Quad Residence Hall and
Learning Center for Sustainable Futures
Columbia, SC
Architect: The Boudreaux Group

Bottom:
Metro Atlanta YMCA
Atlanta, GA
Architect: Gallin Cooper Cassi Architects, Inc.

Durham County Public Library
Durham NC
Architect: The Freelon Group

University of South Carolina
Green Quad Residence Hall and
Learning Center for Sustainable Futures
Columbia, SC
Architect: The Boudreaux Group

Metro Atlanta YMCA
Atlanta, GA
Architect: Gallin Cooper Cassi Architects, Inc.