Continuing the Quest for a Mass Spectrometry-Based Plate Reader: Evaluating Laser Diode Thermal **Desorption (LDTD) coupled with Nanoliter** Dispensing for HT-ADME and Other HTS Applications

Andrew Wagner Sr. Research Scientist **Bristol-Myers Squibb**

Outline

- Role of mass spectrometry (MS)-based high-throughput (HT) screening in early drug discovery
- Advantages of MS-based analysis
- Quick overview of current front-end automation tools used to improve MS-based throughput
- Continuing the quest for MS-based, sub-second sample readout speeds for HT-ADME and HTS support
 - **Laser Diode Thermal Desorption (LDTD) evaluation** and potential uses in early drug discovery
- **Summary and next steps**

HT MS-based Screening in Early Drug Discovery

Maximize availability and impact of *in vitro* screening data to drive informed decision-making throughout discovery & development

Commonly performed MS-based screening applications

- In vitro liability screening (HT-ADME)
 - 1000s of samples to be analyzed daily
 - Characterize PK and Toxicity of NMEs
 - Assess potential liabilities
 - Selecting/prioritizing NMEs for advancement

Other potential screening applications

- Biological activity screening (HTS)
 - >10,000 samples to be analyzed daily
 - Miniaturization of assay format necessary

Project Human PK, PD, PK-PD, dose, DDI,

Advantages of MS-based, "Label-Free" Screening

- Allows us to use clinically-relevant, native probe substrates instead of molecular labels, fluorescent dyes, radiolabeled probes, etc...
 - May reduce cost
 - Eliminates radioactive waste streams
 - More predictive assay suites
 - Better in vitro-in vivo correlation
- Flexible and sensitive platform
- Able to quantify multiple analytes simultaneously

With this:

Supporting HT-ADME & HTS: Traditional LC-MS/MS

- Samples acquired in sequential manner (Slow minutes per sample)
- Not possible to support high volumes associated with HT-ADME or HTS.

Supporting HT-ADME & HTS: Multiplexed LC-MS/MS

Thermo Cohesive ARIA System, ADDA System (Apricot Designs), etc.

Supporting HT-ADME & HTS: On-line SPE-MS/MS

RapidFire™ System (Agilent) or ADDA System (Apricot Designs)

- Significant throughput gains over LC-MS/MS
 - ~10-15 seconds per sample
- High-speed on-line solid phase extraction (SPE)
 - "Trap and Elute"
 - No Chromatography
 - Amenable to substrate-based (probe-specific) assays
 - CYP Inhibition, Transporter Inhibition, etc.

Emerging Technologies: Laser Desorption Ionization

"Next-Generation" Methodologies

Laser Desorption Ionization (LDI) Techniques

- Faster sample readout & smaller volume requirements
- Direct analysis (no LC or SPE, no mobile phase)
 - Liquid samples deposited directly onto plate
- Ideal for "probe-specific" assays
- Throughput speeds approaching or equal to plate-reader assays

MALDI-TOF

Bruker Corp. (www.bruker.com)

LDTD-MS/MS

Phytronix (www.phytronix.com)

Quick Comparison: MALDI-TOF vs. LDTD-MS/MS

Matrix-assisted laser desorption/ionization (MALDI) - time-of-flight (TOF)

- Small molecule targets can "get lost" in biological background and MALDI matrices
 - Susceptible to ionization suppression effect which reduces S:N
- TOF analyzer collects data on wide range of ions
 - Potential for simple method development
 - Generally lower sensitivity for quantitation

Laser Diode Thermal Desorption (LDTD)-Tandem Mass Spec (MS/MS)

- APCI with Triple Quadrupole analyzer less susceptible to ionization suppression
 - Selected Reaction Monitoring (SRM) mode
 - Requires up front method development
 - Typically better sensitivity (background reduced significantly)
 - Gold standard for quantitation by MS

LDTD – Quick Overview of Process

Combines ultra-fast thermal desorption with efficient gas-phase APCI

- Samples deposited into well of stainless steel LazWell plate and evaporate into analyte-nanocrystal structure
- Infrared laser diode heats back of well to produce thermal desorption
- Neutral gas-phase molecules enter the piston
- Neutrals enter corona discharge region to undergo APCI
- "Reinvented" APCI: no solvent, no mobile phase, only water as source of protons

 Bristol-Myers Squibb

10

HT-ADME Evaluation – CYP Inhibition Assay

Goal:

 Couple acoustic sample deposition (ASD) with LDTD analysis

Determine:

Optimal laser pattern for speed/reproducibility

Demonstrate:

- Adequate bioanalytical performance
- Throughput much faster than current production method (RapidFire)
 - Discrete analysis of individual CYP isozymemetabolite pairs
 - Potential of sample multiplexing (reduce consumables cost/increase speed)

Desired Workflow: Coupling ASD with LDTD-MS/MS

Couple Acoustic Sample Deposition (ASD) with LDTD MS to achieve High Throughput MS readout (ASD-HTMS)

2. Transfer nL volumes onto a stainless-steel LazWell 384

plate

3. LDTD ion source (Phytronix) attaches to front of Sciex MS

1. Sample incubation in Echoqualified 384-w plates

2. Haarhoff, Z., Wagner, A., Picard, P., Drexler, D. M., Zvyaga, T., & Shou, W. (2015). Coupling Laser Diode Thermal Desorption with Acoustic Sample Deposition to Improve Throughput of Mass Spectrometry-Based Screening. Journal of biomolecular screening, 1087057115607184.

Sample readout from 2-6 seconds/well

Determine Optimal/Fastest Laser Pattern

Importance of MS Scan speeds

Sciex API4000

- Slow cycle times per transition
- Laser pattern had to be lengthened for optimal results
 - 36 minutes per 384 well plate
 - Poor peak shape

Determine Optimal/Fastest Laser Pattern

Sciex 4500 TripleQuad

- Faster scan speeds (reduced to 5ms per transition) allowed us to increase speed of laser pattern
- Maximized throughput
 - 13 minutes per 384 well plate
 - Sharp peaks better signal

CYP2C9 Assay Controls: LDTD vs. RapidFire™

LDTD

RapidFire[™]

LDTD

RapidFire[™]

[&]quot;Acoustic Sample Deposition Coupled With LDTD-MS/MS Takes High-Throughput MS to the Next Level," Z. Haarhoff, A. Wagner, T. Zvyaga, W. Shou, P. Picard. 4th SLAS Annual Conference & Exhibition, **2015**, Washington, DC.

Post-Reaction Multiplexing: ASD with LDTD-MS/MS

2D6

3x reduction in # of plates to analyze with LDTD-MS/MS

Per Sample

1 LazWell Plate

LDTD-MS/MS

"Acoustic Sample Deposition Coupled With LDTD-MS/MS Takes High-Throughput MS to the Next Level," Z. Haarhoff, A. Wagner, T. Zvyaga, W. Shou, P. Picard. 4th SLAS Annual Conference & Exhibition, **2015**, Washington, DC.

Per Well

Per Well

Post-Reaction Multiplexing: Data Evaluation

HTS Evaluation – Biological Activity Screen

Goal:

Develop nanoliter transfer (Mosquito HTS) with LDTD-MS/MS analysis methodology for HTS assay used to assess biological activity against a potential therapeutic target and complete a "focused" deck of representative compounds (~50,000 compounds total)

Demonstrate:

- Ability to successfully automate nanoliter sample transfer from 1536-well assay plates into 4 separate 384-well LazWell plates
- Feasibility of using LDTD to support biological activity screen
 - Complete entire "focused" deck screen of ~50,000 compounds
 - Adequate performance: Z' values, signal/background
 - "Hit" % comparable to fluorescence-based screen

Desired Workflow: Nanoliter Transfer to LDTD Plates

Dilute and Transfer Samples from 1536-well assay plate into 4 384-well LazWell (LDTD) plates using Mosquito HTS liquid handler (TTP LabTech)

1. Sample incubation in usual 1536-w plate

2. Dilute and Transfer nL volumes onto 4 stainlesssteel LazWell 384 plate

4. Peak integration and deconvolution of data

3. LDTD-MS/MS (Phytronix) analysis

Data Processing: 1536 to 384 Workflow

Assay Validation: Concentration Response Curves (CRC) of Selected Compounds

CRC Plate: Reaction

= Enzyme + Substrate/Rxn (+ control)

= Substrate/Rxn (- control)

CRC Plate: Heat Map

 Measures enzymatic activity by product:internal standard ratio

= Enzyme activity inhibited

= High enzymatic activity

Assay Validation: CRC Results of 126 Compounds

Potency Summary

<u>IC</u> ₅₀	<u>Compounds</u>
<u>IC₅₀</u> < 1 μΜ	23
1 – 5 μM	81
5 – 10 μM	7
>10 µM	2
No Fit/No IC ₅₀	13

Results agree well with fluorescence assay

Completion of "Focused" Deck HTS

Primary Screen: Reaction Plate

- = Compounds + Enzyme + Substrate/Rxn
- = Enzyme + Substrate/Rxn (+ control)
- = Substrate/Rxn (- control)

Primary Screen: Heat Map

- Measures enzymatic activity by product:internal standard ratio
- = No enzyme activity "Hits"
- = High enzymatic activity

HTS by LDTD-MS/MS: Results and Statistics

HTS of ~50,000 compounds successfully/quickly completed using LDTD-MS/MS

- Screen resulted in ~5% Hit Rate (similar to RF, Fluorescent)
- Robust signal/background
 - Totals ~10 fold higher response than blanks
- Z' of plate controls (0.56) indicate a robust screen

Comparison: MS-based Analytical Throughput

Many hours per 384 well plate

~3-4 hours per 384 well plate

~1 hour per 384 well plate

<15 min per 384 well plate

<5 min per 384 well plate

Conclusions

LDTD has potential for use in both liability and activity screening applications

- Successfully completed biological activity screen
 - Quickly & successfully completed ~50,000 compound "focused" deck screen
 - Results corresponded with fluorescence and RapidFire analysis
- Completed evaluation of HT-ADME (CYP Inhibition) using LDTD-MS/MS
 - Generated IC₅₀ values consistent with RapidFire analysis
 - Showed the potential for sample multiplexing

Main advantages of using LDTD-MS/MS

- 5x faster than RF discrete analysis and 16x faster multiplexed (3 separate assays)
- Greatly reduced sample volume requirements (assay miniaturization possible)

Looking forward

- LDTD can provide a complimentary approach to existing methodologies for both HT-ADME and HTS applications
- Continue to push the limitations of MS-based throughput by exploring other potential applications of LDTD technology

Acknowledgements

BMS Lead Discovery/Optimization

Dave Harden Kingsley Appiah Zuzana Haarhoff Tatyana Zvyaga

BMS Bioanalytical

Wilson Shou **Dieter Drexler** Jun Zhang Xianmei Cai **Anthony Paiva** Shu Li Ying Li Kasia Kieltyka

Phytronix

Pierre Picard Alex Birsan

Yale Interns

Emily Wingrove Ryan Brecht

BMS Compound Management

Elizabeth Wood Shannon McCabe Jefferson Chin

BMS Leadership

Harold Weller Victoria Emerick **Martyn Banks** Laszlo Kiss Litao Zhang **Percy Carter**